

Why Do We Treat Obesity?

Organ-Specific, Hormonal, and Biomechanical Complications

AACE OBESITY RESOURCE CENTER

AACE ONLINE ENDOCRINE ACADEMY

3.

Treatment Based on Clinical Judgment

TREATMENT GOALS BASED ON DIAGNOSIS IN THE MEDICAL MANAGEMENT OF PATIENTS WITH OBESITY

	DIAGNOSIS		TREATMENT GOALS	
	Anthropometric Component	Clinical Component	Intervention/ Weight-Loss Goal	Clinical Goals
TERTIARY PREVENTION				
Overweight or Obesity	BMI ≥25 (≥23 in certain ethnicities)	Polycystic ovary syndrome	5% to 15% or more	 Ovulation Regularization of menses Reduced hirsuitism Enhanced insulin sensitivity Reduced serum androgen levels
		Female infertility	10% or more	OvulationPregnancy and live birth
		Male hypogonadism	5% to 10% or more	Increase in serum testosterone
		Obstructive sleep apnea	7% to 11% or more	Improved symptomatologyDecreased apnea-hypopnea index
		Asthma/reactive airway disease	7% to 8% or more	 Improvement in forced expiratory volume at 1 second Improved symptomatology
		Osteoarthritis	 ≥10% 5% to 10% or more when coupled with exercise 	Improvement in symptomatology Increased function
		Urinary stress incontinence	5% to 10% or more	Reduced frequency of incontinence episodes
		Gastroesophageal reflux disease	10% or more	Reduced symptom frequency and severity
		Depression	Uncertain	 Reduction in depression symptomatology Improvement in depression scores

Gallbladder Disease

The Paradox of Obesity and Gallbladder Disease

Effect of Obesity

- Increased risk of cholesterol gallstones, cholecystis, and gallbladder cancer, especially in women
 - Increased biliary fat may increase cholesterol in the gallbladder
- Risk increases with higher BMI

Effect of Weight Loss

- Increased risk of gallstones
 - 10% to 25% of patients on dietexercise regimens and up to 30% undergoing bariatric surgery develop gallstones
 - Higher risk in patients with a high BMI prior to weight loss or those who lose weight rapidly
- Oral ursodeoxycholic acid during weight loss may prevent gallstone formation

Sex Hormone Disorders

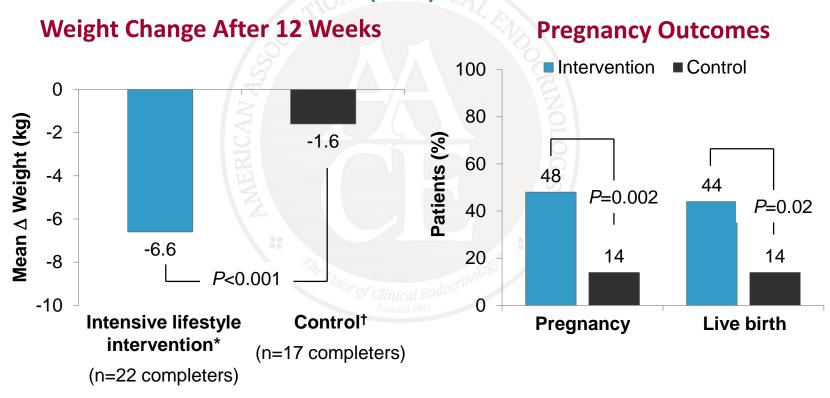
Polycystic Ovary Syndrome

Disease Features

- Characterized by anovulation or irregular menstrual cycles with hyperandrogenism
 - Not a consequence of obesity, but may worsen with weight gain
 - Pathophysiologically linked to insulin resistance
- Increased risk for T2D, dyslipidemia, hypertension, inflammation, and CVD

Treatment

- Increase insulin sensitivity
 - Aerobic exercise and weight loss
 - Metformin,* pioglitazone,*† or GLP-1 receptor agonist*†
- Spironolactone or other nonandronergic oral contraceptive for skin manifestations (hirsutism, acne)


CVD = cardiovascular disease; PCOS = polycystic ovary syndrome; T2D = type 2 diabetes.

^{*}Not FDA-approved for PCOS.

[†]Recommended only for women with IGT or T2D. Pregnancy category C—use with contraception in women of childbearing age.

Effect of Weight Loss on Female Infertility

Women With Obesity Presenting for Fertility Treatment (N=49)

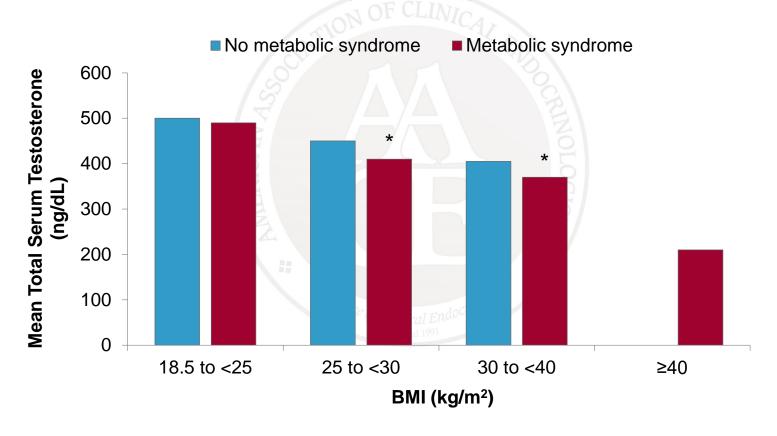
^{*}Very-low-energy diet for first 6 weeks followed by a hypocaloric diet for next 6 weeks, with weekly multidisciplinary group meetings.

[†]Weight loss recommendations plus the same printed materials as intervention group.

Obesity and Testosterone Deficiency

Disease Features

- Total testosterone <280-300 ng/dL and/or free testosterone <5-9 ng/dL*
- Signs and symptoms: fatigue, decreased libido, ED, altered mood/cognition, decreased muscle mass and BMD, increased fat mass
- Strongly associated with metabolic syndrome
- Increased risk for T2D, dyslipidemia, hypertension, and CVD


Treatment

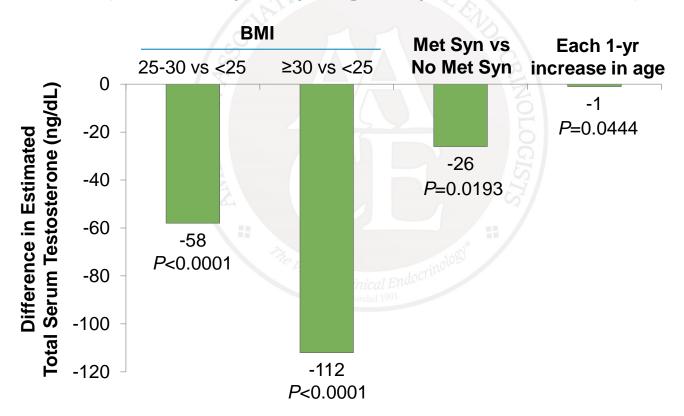
- Weight loss
- Testosterone replacement therapy

^{*}Reference range varies with laboratory; use lower limit of normal.

Androgen Deficiency and BMI

Pooled Data From 2 Lipid Treatment Studies (N=864 men)

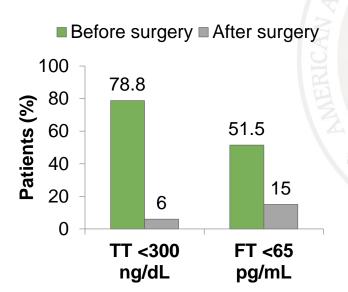
^{*}P<0.05 vs no metabolic syndrome.

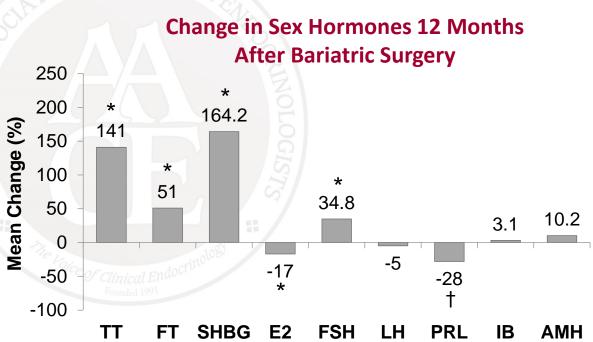

BMI = body mass index.

Kaplan SA, et al. J Urol. 2006;176:1524-1527.

Effects of Obesity, Metabolic Syndrome, and Age on Testosterone Levels

Multiple Linear Regression Analysis


(N=864 men participating in 2 lipid treatment studies)



Effect of Weight Loss on Male Hypogonadism

Observational Data (N=33 men, mean WL = 18.8% [59.1 kg])

AMH = anti-Müllerian hormone; E2 = estradiol; FSH = follicle-stimulating hormone; FT = free testosterone; IB, inhibin B; LH = luteinizing hormone; PRL = prolactin; SHBG = sex hormone binding globulin; TT = total testosterone; WL = weight loss.

^{*}P<0.001, † P=0.01 vs value before surgery.

Pulmonary Disorders

Obesity Adversely Affects Lung Function

- Stiffening of total respiratory system
 - Reduced lung and chest wall compliance
 - Reduced tidal volume and short, rapid breathing pattern
- Reduced lung volume and vital capacity
- Increased risk of airway closure and ventilation distribution abnormalities

Obstructive Sleep Apnea

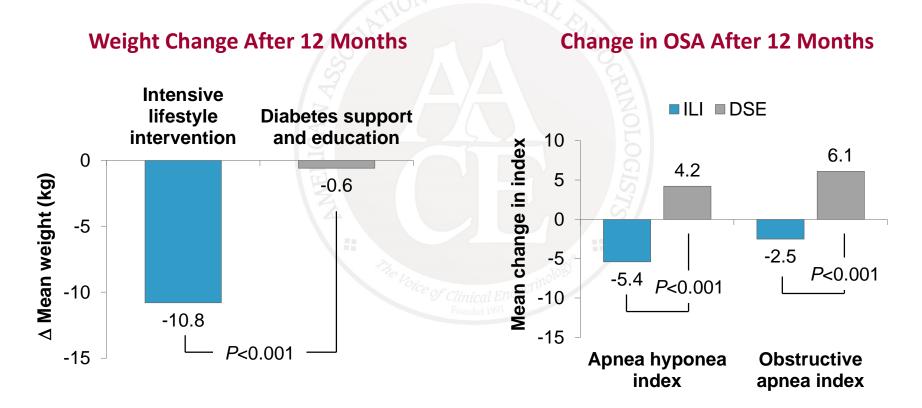
Mechanisms

- Feedback loop involving interplay between excess visceral adipose tissue, insulin resistance, and inflammatory cytokines
 - Excess fat reduces diaphragm mobility and promotes soft tissue edema, which in turn lead to depression of ventilation
- Ventilation depression causes sleep apnea and poor sleep, which contributes to daytime sleepiness and fatigue
- Poor sleep promotes stress hormone and interleukin 6 production, which exacerbates insulin resistance

Risk Factors

Obesity

- Male sex
- Neck circumferenceAge>44 cm
- Narrowed airway
- Family history
- Hypertension
- Alcohol or sedatives


Smoking

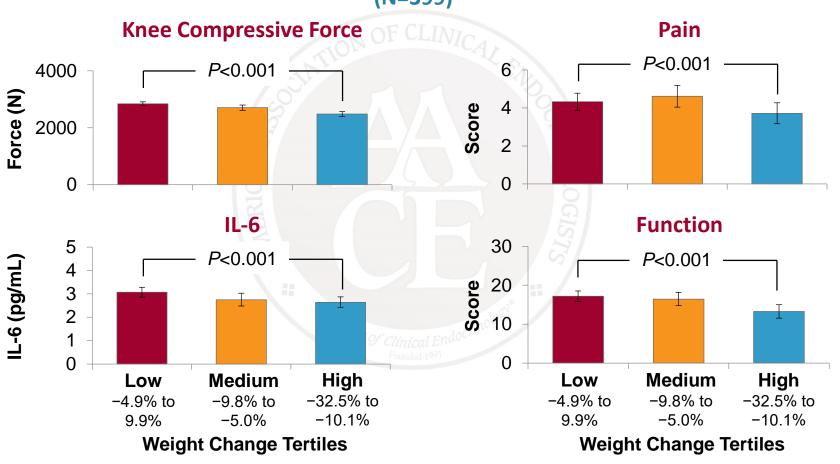
Treatment Options

- Continuous positive airway pressure (CPAP)
- Adjustable airway pressure devices
- Oral appliances
- Surgery
 - Uvulopalatopharyngoplasty (UPPP)
 - Maxillomandibular advancement
 - Tracheostomy

Effect of Weight Loss on OSA

Sleep AHEAD Study (N=264 Patients With T2D)

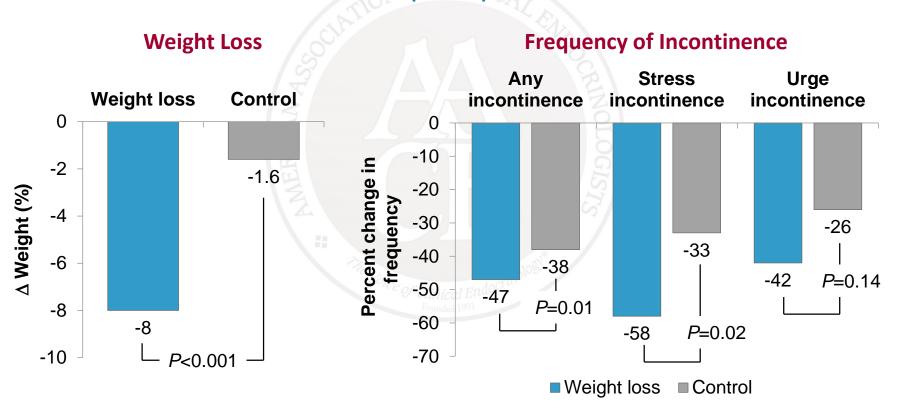
Effects of Weight Loss on Asthma and Reactive Airway Disease


- Calorie restriction with an average of 8% weight loss associated with improvements in asthma disease factors
 - Asthma symptoms
 - Quality of life
 - Peak expiratory flow
 - Markers of oxidative stress and inflammation

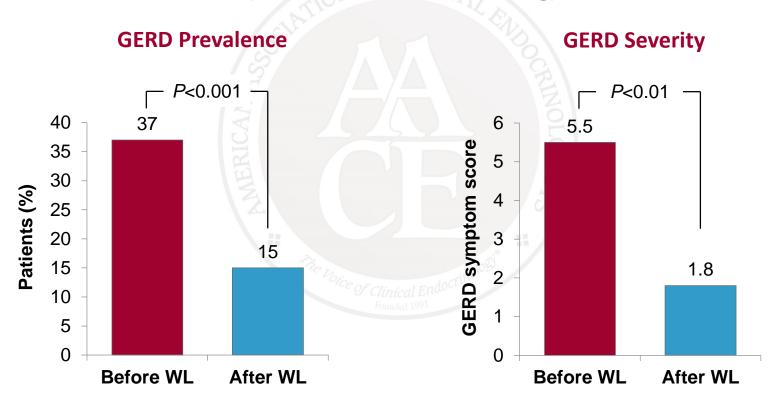
- After RYBG (WL ~23%), significant reductions in expression of:
 - Asthma-related genes
 - Interleukin-4
 - Disintegrin
 - Metalloproteinase 33
 - Rumor necrosis factor (ligand) superfamily member 14
 - Matrix metallopeptidase-9
 - C-C chemokine receptor type-2
 - Nitric acid metabolites

Biomechanical Disorders

Effect of Weight Loss on Osteoarthritis



IL-6 = interleukin 6.


Effect of Weight Loss on Urinary Incontinence in Women

6-Month Randomized, Controlled Weight Loss Study (N=338)

Effect of Weight Loss on Gastroesophageal Reflux Disease

6-Month Prospective Observational Weight Loss Study (N=332; mean WL: 13 \pm 7.7 kg)

Cancer

Obesity and Cancer

Increased Risks

- Obesity increases risk of the following cancers:
 - Colon
 - Endometrium
 - Postmenopausal breast
 - Kidney
 - Esophagus
 - Pancreas
 - Gallbladder
 - Liver
 - Hematological malignancies
- Obesity worsens prognosis and mortality risk

Mechanism

- Obesity increases levels of leptin, IGF-1, and proinflammatory cytokines
 - These activate PI3K/Akt, which promotes cancer cell proliferation through mTOR
- Caloric restriction decreases levels of leptin, IGF-1, and proinflammatory cytokines
 - Signaling through AMPK is enhanced, promoting cancer cell apoptosis

AMPK = adenosine 5'-monophosphate—activated protein kinase; IGF-1 = insulin growth factor 1; mTOR = mammalian target of rapamycin; PI3K/Akt = phosphoinositide 3 kinase protein kinase B.

Summary

- Numerous organ-specific and mechanical complications accompany obesity
 - Gallbladder disease
 - Sex hormone—related disorders
 - Polycystic ovary disease
 - Female infertility and male hypogonadism
 - Pulmonary disorders
 - Obstructive sleep apnea
 - Asthma/reactive airway disease
 - Biomechanical disorders
 - Osteoarthritis
 - Urinary stress incontinence
 - Gastroesophageal reflux disease
- Weight loss ameliorates all of these conditions