Latest Pharmacologic Therapy for the Treatment of Type 2 Diabetes
Faculty
Amit Gupta, DNB, FACE, FICP, FRCP (Glasgow, Edinburgh), FACP
Director, Centre For Diabetes Care
Greater Noida, India

Javier Morales, MD, FACP, FACE
Clinical Associate Professor of Medicine
Donald and Barbara Zucker School of Medicine At Hofstra/Northwell University
Vice President, Advanced Internal Medicine Group, P.C

Rifka C. Schulman-Rosenbaum, MD, FACE, CNSC
Director of Inpatient Diabetes, Long Island Jewish Medical Center, Division of Endocrinology, Northwell Health
Associate Professor, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell

Vijay Shivaswamy, MD
Associate Professor, Division of Diabetes, Endocrinology and Metabolism,
The University of Nebraska Medical Center, VA Nebraska-Western Iowa Health Care System
Objectives

• Evaluate the importance of glycemic control in preventing complications in type 2 diabetes
• Describe the new drug classes and treatment options for treating type 2 diabetes
• Discuss the uses of Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors and Glucagon-Like Peptide 1 (GLP-1) Receptor Agonists in high cardiovascular risk
• Individualize type 2 diabetes regimens in different clinical settings

Wexler DJ. Presented at ADA 29: June 12-16, 2020
Diabetes Mellitus is associated with an increased risk of both micro- and macrovascular disease

<table>
<thead>
<tr>
<th>Microvascular Disease</th>
<th>Macrovascular Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinopathy</td>
<td>Atherosclerotic Cardiovascular Disease (ASCVD)</td>
</tr>
<tr>
<td>Nephropathy</td>
<td>Stroke</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>Heart Failure (HF)</td>
</tr>
<tr>
<td></td>
<td>Peripheral arterial disease</td>
</tr>
</tbody>
</table>
Reducing A1C Reduces Microvascular Risk

United Kingdom Prospective Diabetes Study

Reducing A1C Reduces Nephropathy Risk in Type 2 Diabetes

UKPDS

A1C reduction (%)*

Nephropathy risk reduction (%)*

*Intensive vs. standard glucose control

© AACE. All Rights Reserved.
Use of Antihyperglycemic Agents in Kidney Disease

<table>
<thead>
<tr>
<th>Class: Medication(s)</th>
<th>Kidney Disease Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amylin analog: pramlintide</td>
<td>Not recommended for CKD stage ≥4</td>
</tr>
<tr>
<td>Biguanide: metformin</td>
<td>GFR <45 avoid initiation of drug, for existing users does reduce to maximum 500mg twice daily; GFR <30 use contraindicated</td>
</tr>
<tr>
<td>Bile acid sequestrant: colesevelam</td>
<td>No dosage adjustment</td>
</tr>
<tr>
<td>Dopamine-2 agonist: bromocriptine</td>
<td>Use with caution</td>
</tr>
<tr>
<td>DPP-4 inhibitors: alogliptin, linagliptin, saxagliptin, sitagliptin</td>
<td>Reduce dosage for alogliptin, saxagliptin and sitagliptin if CrCl <50 mg/dL</td>
</tr>
<tr>
<td>Glinides: nateglinide, repaglinide</td>
<td>Start at lowest effective dose if GFR <30 mL/min/1.73 m²</td>
</tr>
<tr>
<td>GLP-1 receptor agonists: albiglutide, dugalutide, exenatide, exenatide XR, liraglutide</td>
<td>Albiglutide has been removed from the market; Dugalutide not recommended for kidney adjustment; Exenatide not recommended with GFR <30 mL/min/; Exenatide XR not recommended for GFR <45</td>
</tr>
<tr>
<td>α-Glucosidase inhibitors: acarbose, miglitol</td>
<td>Avoid if GFR <25 (miglitol) or <30 (acarbose) mL/min/1.73 m²</td>
</tr>
<tr>
<td>Insulin: aspart, degludec, detemir, glargine, glulisine, lispro, NPH, regular</td>
<td>Adjust dose based on patient response</td>
</tr>
<tr>
<td>SGLT inhibitors: canagliflozin, dapagliflozin, empagliflozin</td>
<td>Ineffective if GFR <30 mL/min/1.73 m²</td>
</tr>
<tr>
<td>Sulfonylureas: glimepiride, glipizide, glyburide</td>
<td>No dose adjustment for glipizide; start glimepiride conservatively; avoid glyburide and all other SUs</td>
</tr>
<tr>
<td>Thiazolidinediones: pioglitazone, rosiglitazone</td>
<td>No dosage adjustment</td>
</tr>
</tbody>
</table>
Cardiovascular complications are the main cause of mortality in diabetes

Patients with microvascular complications due to T2D are more likely to have a major CV event^1^.
Hyperglycaemia has a causal effect on the risk of major CV events^2^.
Chronic hyperglycaemia is associated with low-grade inflammation and accelerated atherosclerosis^3^.

Heart
- 2/3 of deaths in T2D are attributable to CV disease^7^.
- 2–6x higher risk of mortality from CV events^8^.
- 2.5x higher risk of developing congestive heart failure^9^.

Brain
- 4x higher risk of coronary artery disease and stroke^4^.
- For every 1% increase in HbA1c, the risk of stroke is increased by up to 30%^5^.

PAD
- 1/3 of patients with T2D over 50 years of age have PAD. This increases the risk of heart attack and stroke^6^.
Macrovascular Risk Reduction in Type 2 Diabetes

- Hypertension control
- Dyslipidemia control
- Smoking cessation
- Glycemic control

- Aspirin therapy
- Lifestyle modification
- Weight loss
Medications for T2D with CV Benefit

<table>
<thead>
<tr>
<th>SGLT2 Inhibitors</th>
<th>GLP-1 RAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidative stress-induced endothelial cell dysfunction</td>
<td>Oxidative stress-induced endothelial cell dysfunction</td>
</tr>
<tr>
<td>Inflammation and atherogenesis</td>
<td>Inflammation and atherogenesis</td>
</tr>
<tr>
<td>Glucose lowering effect</td>
<td>Glucose lowering effect</td>
</tr>
<tr>
<td>Natriuretic / diuretic effect</td>
<td>Natriuretic / diuretic effect</td>
</tr>
<tr>
<td>RAAS effect</td>
<td>RAAS effect</td>
</tr>
<tr>
<td>Uriscosuric effect</td>
<td></td>
</tr>
<tr>
<td>Beta hydroxybutyrate increase</td>
<td></td>
</tr>
</tbody>
</table>
Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors

Currently available drugs:

• Canagliflozin (Invokana)
• Dapagliflozin (Farxiga)
• Empagliflozin (Jardiance)
• Ertugliflozin (Steglatro)
SGLT2 inhibitors

Physiological actions

- Selectively blocks the SGLT2 transporter responsible for > 90% of glucose reabsorption in the nephron.
- Reduced absorption of glucose and sodium, leads to glycosuria and natriuresis.
- Greatest rate of glycosuria occurs during periods of hyperglycemia.
- Minimal risk of hypoglycemia as the action is independent of insulin.

Figure 1. The sodium-glucose cotransporter 2 (SGLT2) mechanism in the proximal tubule. Modified from Bakris et al. with permission of the publisher. Copyright © 2009, Elsevier.
SGLT2 Inhibitors

Mechanisms for Cardioprotection
- Reduce preload and afterload segment
- Improved profile of anti-inflammatory vs. pro-inflammatory cytokine
- Reduced cardiac fibrosis
- Increased hematocrit and erythropoietin production
- Increased cardiac metabolic efficiency

Mechanisms for Renoprotection
- Glycosuria
- Natriuresis
- Decreased glomerular pressure
- Reduced albuminuria
SGLT2 Inhibitors

Summary of CV outcome trials

<table>
<thead>
<tr>
<th>Study</th>
<th>MACE HR (95%CI)</th>
<th>CV Death HR (95%CI)</th>
<th>HHF HR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMPA-REG (empagliflozin)</td>
<td>0.86 (0.74-0.99)</td>
<td>0.62 (0.49-0.77)</td>
<td>0.65 (0.50-0.85)</td>
</tr>
<tr>
<td>CANVAS (canagliflozin)</td>
<td>0.86 (0.75-0.97)</td>
<td>0.87 (0.72-1.06)</td>
<td>0.67 (0.52-0.87)</td>
</tr>
<tr>
<td>DECLARE-TIMI (dapagliflozin)</td>
<td>0.93 (0.84-1.03)</td>
<td>0.98 (0.82-1.17)</td>
<td>0.73 (0.61-0.88)</td>
</tr>
<tr>
<td>VERTIS-CV (ertugliflozin)</td>
<td>0.97 (0.85-1.11)</td>
<td>0.92 (0.77-1.11)</td>
<td>0.70 (0.54-0.90)</td>
</tr>
</tbody>
</table>

MACE = composite of death from CV cause, nonfatal MI and nonfatal stroke
CV death = cardiovascular death
HHF = hospitalization for heart failure
Glucagon-Like Peptide 1 Receptor Agonists (GLP-1 RA)

Currently available drugs:

- Exenatide (Byetta, Bydureon)
- Liraglutide (Victoza)
- Lixisenatide (Adlyxin, component of Soliqua)
 (Available in US as a fixed ratio combination drug)
- Semaglutide (Ozempic, Rybelsus)
- Dulaglutide (Trulicity)
Glucagon-Like Peptide 1 (GLP-1) Receptor Agonists

Mechanisms for Cardioprotection
• GLP-1 receptor is also expressed in cardiomyocytes and coronary endothelial cells

Mechanisms for Renoprotection
• Increased natriuresis
• Increased diuresis
• Blood glucose lowering
• Blood pressure lowering effects
• Decreased insulin levels
• Weight loss
GLP-1 RA: Summary of CV Outcome Trials

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Lixisenatide</th>
<th>Liraglutide</th>
<th>Semaglutide</th>
<th>Exenatide</th>
<th>Albiglutide</th>
<th>Dulaglutide</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACE, HR (95% CI)</td>
<td>1.02 (0.89-1.17)</td>
<td>0.87 (0.78-0.97)</td>
<td>0.74 (0.58-0.95)</td>
<td>0.91 (0.83-1.00)</td>
<td>0.78 (0.68-0.90)</td>
<td>0.88 (0.79-0.99)</td>
</tr>
<tr>
<td>CV death, HR (95% CI)</td>
<td>0.98 (0.78-1.22)</td>
<td>0.78 (0.66-0.93)</td>
<td>0.98 (0.65-1.48)</td>
<td>0.88 (0.76-1.02)</td>
<td>0.93 (0.73-1.19)</td>
<td>0.91 (0.78-1.06)</td>
</tr>
<tr>
<td>Fatal or nonfatal MI, HR (95% CI)</td>
<td>1.03 (0.87-1.22)</td>
<td>0.86 (0.73-1.00)</td>
<td>0.74 (0.51-1.08)</td>
<td>0.97 (0.85-1.10)</td>
<td>0.75 (0.61-0.90)</td>
<td>0.96 (0.79-1.15)</td>
</tr>
<tr>
<td>Fatal or nonfatal stroke, HR (95% CI)</td>
<td>1.12 (0.79-1.58)</td>
<td>0.86 (0.71-1.06)</td>
<td>0.61 (0.38-0.99)</td>
<td>0.85 (0.70-1.03)</td>
<td>0.86 (0.66-1.14)</td>
<td>0.76 (0.62-0.94)</td>
</tr>
<tr>
<td>All-cause mortality, HR (95% CI)</td>
<td>0.94 (0.78-1.13)</td>
<td>0.85 (0.74-0.97)</td>
<td>1.05 (0.74-1.50)</td>
<td>0.86 (0.77-0.97)</td>
<td>0.95 (0.79-1.16)</td>
<td>0.90 (0.80-1.01)</td>
</tr>
<tr>
<td>HF hospitalization, HR (95% CI)</td>
<td>0.96 (0.75-1.23)</td>
<td>0.87 (0.73-1.05)</td>
<td>1.11 (0.77-1.61)</td>
<td>0.94 (0.78-1.13)</td>
<td>0.93 (0.77-1.12)</td>
<td></td>
</tr>
</tbody>
</table>
Improved Renal Outcomes in GLP-1 RA and SGLT2 Inhibitor Trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEADER(^{1,a})</td>
<td>Liraglutide</td>
<td>0.78 (0.67, 0.92)</td>
<td>0.003</td>
</tr>
<tr>
<td>SUSTAIN 6(^{2,b})</td>
<td>Semaglutide</td>
<td>0.64 (0.46, 0.88)</td>
<td>0.005</td>
</tr>
<tr>
<td>EMPA-REG OUTCOME(^{3,c})</td>
<td>Empagliflozin</td>
<td>0.61 (0.53, 0.70)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>CANVAS(^{4,d})</td>
<td>Canagliflozin</td>
<td>0.60 (0.47, 0.77)</td>
<td></td>
</tr>
<tr>
<td>DAPA-CKD(^{5,e})</td>
<td>Dapagliflozin</td>
<td>0.56 (0.45, 0.68)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>CREDENCE(^{6,f})</td>
<td>Canagliflozin</td>
<td>0.70 (0.59, 0.82)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Composite Renal Outcomes:
- \(^{a}\)Macroalbuminuria, doubling of serum creatinine, and eGFR ≤45 mL/min/1.73 m², ESRD, or renal death;
- \(^{b}\)Macroalbuminuria, doubling of serum creatinine, and eGFR ≤45 mL/min/1.73 m² or need for continuous renal replacement therapy;
- \(^{c}\)Macroalbuminuria, doubling of serum creatinine level, eGFR ≤45 mL/min/1.73 m², initiation of renal-replacement therapy or renal death;
- \(^{d}\)40% reduction in eGFR, ESRD, or renal death;
- \(^{e}\)sustained decline in eGFR ≥ 50%, ESRD, or death from renal causes;
- \(^{f}\)doubling of serum creatinine, ESRD (GFR <15 mL/min/1.73 m², dialysis or transplant), renal death or CV death.
GLP-1 RAs Added to 1-2 Oral Agents: Weight Effects

Mean change in weight from baseline after 24 ± 4 weeks, kg (range)

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0

GLAR
PBO
SITA 100 mg QD
DULA 0.75 mg QW
EXN 2 mg QW
EXN 5 μg BID
LIRA 1.2 mg QD
LIXI 10-20 μg QD
DULA 1.5 mg QW
LIRA 1.8 mg QD
EXN 10 μg BID
SEMA 0.5 mg QW
SEMA 1.0 mg QW

a Systematic review of 41 randomized controlled clinical trials
Meta-analyses of effects of SLGT2 inhibitors vs Control on HbA1C levels.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850151/pdf/JAH3-7-e007165.pdf
Meta-analyses of effects of SLGT2 inhibitors vs Control on HbA1C levels.

- **Empagliflozin**
 - Ridderstrale, et al (2014)\(^{29}\)
 - EMPA-REG OUTCOME (2015)\(^{11}\)
 - Subtotal \((I^2 = 0.0\%, \, P = 0.934)\)
 - WMD (95% CI): \(-0.11 (\text{-0.19, -0.02})\)
 - Weight: 8.18

- **Canagliflozin**
 - Leiter, et al (Canagliflozin 100mg) (2015)\(^{27}\)
 - Leiter, et al (Canagliflozin 300mg) (2015)\(^{27}\)
 - Bode, et al (Canagliflozin 100mg) (2015)\(^{28}\)
 - Bode, et al (Canagliflozin 300mg) (2015)\(^{29}\)
 - CANVAS Program (2017)\(^{12}\)
 - Subtotal \((I^2 = 90.5\%, \, P = 0.000)\)
 - WMD (95% CI): \(-0.20 (\text{-0.34, -0.06})\)
 - Weight: 7.72

- **Dapagliflozin**
 - Wilding, et al (Dapagliflozin 2.5mg) (2014)\(^{30}\)
 - Wilding, et al (Dapagliflozin 5mg) (2014)\(^{30}\)
 - Wilding, et al (Dapagliflozin 10mg) (2014)\(^{30}\)
 - Bailey, et al (Dapagliflozin 2.5mg) (2014)\(^{28}\)
 - Bailey, et al (Dapagliflozin 5mg) (2014)\(^{28}\)
 - Bailey, et al (Dapagliflozin 10mg) (2014)\(^{28}\)
 - Prato, et al (2015)\(^{26}\)
 - Subtotal \((I^2 = 59.2\%, \, P = 0.023)\)
 - WMD (95% CI): \(-0.21 (\text{-0.41, -0.01})\)
 - Weight: 7.07

Overall \((I^2 = 92.6\%, \, P = 0.000)\)
- WMD (95% CI): \(-0.39 (\text{-0.52, -0.26})\)
- Weight: 100.00

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850151/pdf/JAH3-7-e007165.pdf
GLP-1 RAs and Cognitive Impairment

<table>
<thead>
<tr>
<th></th>
<th>Dulaglutide (REWIND Trial)<sup>a</sup></th>
<th>Liraglutide<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Cognitive Outcome</td>
<td>> 1.5 SDs on MoCA or DSST below the baseline mean score</td>
<td>Change in neuropsychological assessment (attention, memory, and executive control) after achievement of target weight loss</td>
</tr>
<tr>
<td>Trial Findings</td>
<td>Baseline MoCA score: 25</td>
<td>Mean Di8git Span Z score: -0.06 to 0.80, P = .024</td>
</tr>
<tr>
<td></td>
<td>Baseline DSST score: 37</td>
<td>Mean memory composite z-score: -0.67 to 0.032, P = .0065</td>
</tr>
<tr>
<td></td>
<td>HI 0.86 (95% CI 0.79, 0.95; P = .0018)<sup>*</sup></td>
<td></td>
</tr>
<tr>
<td>Conclusions</td>
<td>Patients on dulaglutide had a 14% reduction in substantive cognitive impairment</td>
<td>Liraglutide might slow down memory function decline in diabetes patients early, and possibly preclinical stages of the disease</td>
</tr>
</tbody>
</table>

*After post hoc adjustment for individual standardized baseline scores.

Drug selection: SGLT2 inhibitor vs. GLP1-RA

AACE/ADA/EASD/ACC

• Can begin with metformin monotherapy for DM2, but consider adding GLP-1 RA or SGLT2 inhibitor independent of HbA1c target.

• Can consider beginning therapy with GLP-1 RA or SGLT2 inhibitor prior to metformin in patients with higher cardiovascular risk.

• If atherosclerotic CVD or stroke predominates:
 Choose GLP-1 RA with proven benefit

• If heart failure or CKD predominates:
 Choose SGLT2 inhibitor with proven benefit
ESC/EASD Guidelines: Novel Glucose-Lowering Drugs

A. T2DM -- Drug-naive patients

- ASCVD, or high/very high CV risk (target organ damage or multiple risk factors)
 - SGLT2 inhibitor or GLP-1 RA*
 - Metformin
 - Add SGLT2 inhibitor or GLP-1 RA*

B. T2DM -- On metformin

- ASCVD, or high/very high CV risk (target organ damage or multiple risk factors)
 - Continue metformin

<table>
<thead>
<tr>
<th>Very high CV risk</th>
<th>High CV risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with DM and established CVD</td>
<td></td>
</tr>
<tr>
<td>• or other target organ damage†</td>
<td></td>
</tr>
<tr>
<td>• or three or more major risk factors‡</td>
<td></td>
</tr>
<tr>
<td>• or early onset T1DM of long duration (> 20 years)</td>
<td></td>
</tr>
<tr>
<td>Patients with DM duration ≥ 10 years without target organ damage plus any other additional risk factor</td>
<td></td>
</tr>
</tbody>
</table>

*Use drugs with proven CVD benefit.
†Proteinuria, renal impairment defined as eGFR < 30 mL/min/1.73 m², LVH, or retinopathy.
‡Age, hypertension, dyslipidemia, smoking, obesity.
AACE/ACE Comprehensive Type 2 Diabetes Management Algorithm

Glycemic Control Algorithm

Individualize Goals

A1C ≤6.5%

For patients without concurrent serious illness and at low hypoglycemic risk

A1C >6.5%

For patients with concurrent serious illness and at risk for hypoglycemia

Lifestyle Therapy and Ongoing Glucose Monitoring (CGM preferred)

Independent of Glycemic Control, if Established or High ASCVD Risk and/or CKD, Recommend SGLT2i and/or LA GLP1-RA

DUAL THERAPY

GLP1-RA

SGLT2i

TZD

SU/GLIN

TRIPLE THERAPY

GLP1-RA

SGLT2i

SU/GLIN

Basal Insulin

Coalescivan

Bremisorcs OR

AG

Progression of Disease

ADD OR INTENSIFY INSULIN

Refer to Insulin Algorithm

SYMPTOMS

NO

DUAL Therapy

OR

TRIPLE Therapy

INSULIN & Other Agents

YES

MET (another agent)
AACE/ACE Comprehensive Type 2 Diabetes Management Algorithm

Profiles of Antihyperglycemic Medications

<table>
<thead>
<tr>
<th>Medication</th>
<th>MET</th>
<th>GLP1-RA</th>
<th>SGLT2i</th>
<th>DPP4i</th>
<th>AGl</th>
<th>TZD (moderate dose)</th>
<th>SU</th>
<th>GLN</th>
<th>COLSVL</th>
<th>BCR-QR</th>
<th>INSULIN</th>
<th>PRAML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypo</td>
<td>Neutral</td>
</tr>
<tr>
<td>Weight</td>
<td>Slight Loss</td>
<td>Loss</td>
<td>Loss</td>
<td>Neutral</td>
<td>Gain</td>
<td>Gain</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Gain</td>
<td>Loss</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Renal/GU
- Contraindicated if eGFR < 30 ml/min/1.73 m²
- Not indicated for eGFR < 45 ml/min/1.73 m²
- Dose Adjustment: Necessary (Except Tinzaparinin)
- Effective in Reducing Albuminuria

GI Sx
- Moderate
- Moderate
- Neutral
- Moderate
- Neutral
- Neutral
- Mild
- Moderate
- Neutral

CHF
- Neutral
- Prevent HF Hospitalization: Manage HTN: See #2
- Neutral
- Moderate
- Neutral
- Neutral
- Neutral

ASCVD
- Neutral
- Potential Benefits of LA GLP1-RA: See #3
- Neutral
- May Reduce Stroke Risk
- Possible ASCVD Risk
- Lowers LDL-C
- Safe
- Neutral

Bone
- Neutral
- Neutral
- Neutral
- Moderate Fracture Risk
- Neutral
- Neutral
- Neutral

Ketotic Acidosis
- Neutral
- DKA Can Occur in Various Stress Settings
- Neutral
- Neutral
- Neutral
- Neutral
- Neutral
- Neutral

Notes
1. Canagliflozin indicated for eGFR ≥ 30 ml/min/1.73 m² in patients with CKD 3a albuminuria.
2. Dapagliflozin—potential primary prevention of HF hospitalization & demonstrated efficacy in HFpEF.
3. Epedagliptin—Dx approved to reduce CVD mortality. Canagliflozin—Dx approved to reduce NACD events.
4. Potential increased hospitalizations for heart failure with albiglutide and saxagliptin.

Medication Access/Medication Cost

• Despite promising data described above, many patients are unable to utilize these classes of medications due to high cost involved and economic hardship.

• Uninsured patients, and even some insured patients, with high copays or deductibles may be limited in their ability to obtain diabetes medications with the best profiles for organ protection.

• Often a particular insurance company will only cover one agent within a particular class so ability to select a specific drug may be limited.

• Be aware of limitations when prescribing and consider options for cost-reduction or alternative medications if cost remains prohibitive.
Conclusions

- Diabetes is a multifactorial disease
- Many people with T2DM have ASCVD, kidney disease, and/or HF
- Role for PCPs, cardiologists, nephrologists, and diabetologists in risk management for T2DM and CVD, or CKD, or risk factors
- We can prevent progression of diabetes complications
- Latest guidelines recommend SGLT2 inhibitors and GLP-1 RAs for organ protection in individualized diabetes care
- Novel glucose-lowering drugs have a role beyond T2DM: in HF, ASCVD, and kidney disease
References

References

References

References

References

References

References

References
