

Initiating and Intensifying Insulin Therapy in Patients With Type 2 Diabetes

Initiation and Intensification of Insulin Therapy in Patients With Type 2 Diabetes – An Overview

This presentation will discuss:

- Insulin evolution over the last century
- Strategies to select and initiate insulin treatment in patients with T2D
- Current treatment algorithms and the benefits of early insulinization
- The profiles of available basal and prandial insulin formulations
- Insulin delivery routes and formulations, including emerging options
- Therapeutic inertia and treatment intensification
- Using insulin therapy in combination with other antihyperglycemic agents
- Insulin safety, including cardiovascular safety and hypoglycemia risk

Celebrating 100 Years of Insulin Development: 1921-2021

A Century of Insulin Development and Evolution

NPH, neutral protamine Hagedorn; US, United States.

A Timeline of Diabetes Technology

Selecting Insulin vs Non-insulin Therapy in Patients With T2D

- Insulin is the most potent antihyperglycemic agent.¹
- Many factors must be considered when choosing to initiate insulin therapy vs other antihyperglycemic agents.¹
- Therapeutic selection for patients with T2D should be individualized based on patient and medication attributes.^{1,2}
 - Patient attributes: Initial A1C level, diabetes duration, obesity status, age, hypoglycemia risk, and other comorbidities.
 - Medication attributes: Efficacy, mechanism of action, hypoglycemia risk, risk
 of weight gain, adverse events, tolerability, ease of use, likely adherence, and
 cost.
- With the goals of safety and risk reduction, select therapy that reflects the patient's cardiac, cerebrovascular, and renal status.^{1,2}

AACE Glycemic Control Algorithm: When to Consider Insulin Therapy in Patients With T2D

A1C > 9.0% and/or symptomatic hyperglycemia; with or without other antihyperglycemic agents

In combination with 1-2 other antihyperglycemic agents when A1C is ≥7.5%-9.0%

Added to monotherapy or dual therapy when A1C goals are not met after 3 months

- Patients taking 2 oral agents with A1C >8.0% and/or long-standing
 T2D are less likely to reach target A1C with a 3rd non-insulin agent.
- Adding a 3rd non-insulin agent may successfully reduce glycemia in some patients, but many will eventually require insulin.

Choice of treatment depends on patient and medication

AACE Glycemic Control Algorithm

AGi, alpha-glucosidase inhibitor; **ASCVD**, atherosclerotic cardiovascular disease; **CGM**, continuous glucose monitoring; **CKD**, chronic kidney disease; **DPP4i**, dipeptidyl peptidase-4 inhibitor; GLN, glinides; GLP-1 RA, glucagon-like peptide-1 receptor agonist; **HFrEF**, heart failure with reduced ejection fraction; LA, long-acting; MET, metformin; QR, quick-release; SGLT2i, sodium-glucose cotransporter 2 inhibitor; **SU**, sulfonylurea; **T2D**, type 2 diabetes; TZD, thiazolidinedione.

Garber AJ, et al. *Endocr Pract*. 2020;26(1):107-139.

ADA Overall Approach to Glucose-Lowering Medication: When to Consider Insulin Therapy in Patients With T2D

- The early introduction of insulin should be considered in the setting of ongoing catabolism (weight loss, hypertriglyceridemia, ketosis), symptoms of hyperglycemia, A1C levels >10%, and/or blood glucose levels ≥300 mg/dL.
- Insulin can be added to metformin (first-line therapy) if the A1C target is not achieved after 3 months.
- Due to the progressive nature of T2D, many patients eventually require and benefit from insulin therapy.

Agents other than insulin may be preferred; choice of treatment depends on patient and medication attributes.

Achievement of A1C <7% With Basal Insulin Regimen in T2D

- Systematic review (29 RCTs, N=17,588 patients) evaluating the effectiveness of insulin analog regimens
- A1C <7% achieved in 41.4% (95% CI: 35.6%, 47.4%)
- Predictors of response: first insulin treatment; lower insulin dose; use of 2 OADs
- Over 30 days, mean/median hypoglycemia with basal insulin was 0.50/0.39 events/patient
- Weight gain: 1.8 kg (95% CI: 1.2, 2.1)

Very Early Insulinization in T2D

- Evidence suggests that early, short-term insulin treatment can improve glycemic control and preserve beta-cell function in patients with newly diagnosed T2D and severe, symptomatic hyperglycemia.¹⁻³
- By treating patients with insulin before diabetes has progressed (typically for 2 weeks to 3 months), glucolipotoxicity is rapidly reversed, and beta-cells are given the chance to "rest." ¹⁻³
- Several controlled and uncontrolled studies have shown that intensive, early, short-term insulin therapy can lead to sustained normoglycemia for up to 12 months in ~31%-51% of patients.^{1,4-9}
 - This treatment approach may also preserve residual beta-cell function, enabling the effective, future use of non-insulin antihyperglycemic agents. 1,6,7

T2D, type 2 diabetes.

Patients With Ketosis-Prone T2D Require Early Insulinization

- Ketosis-prone T2D is characterized by the new, acute onset of hyperglycemia with ketoacidosis, requiring hospitalization.¹
- Patients often have a family history of T2D and are predominantly:1-4
 - Black or Latino
 - Middle-aged (but can be younger)
 - Overweight and/or obese
 - Male
- Patients present with impaired insulin secretion and action;³ the clinical course resembles T2D.¹
- Treatment requires intensive, initial insulin for several weeks to months. 1,3
- Following insulin discontinuation, metabolic abnormalities typically improve, and a proportion of patients enter a period of near-normoglycemic remission.^{1,3}

Early Insulinization in Patients With Ketosis-Prone T2D: 40.5% Remained in Remission at 10 Years' Follow-up

- Cohort study of 111 hospitalized patients with KP T2D (both insulindependent and nondependent) of Sub-Saharan African descent
- With early treatment, a majority (75.7%) achieved remission from insulin dependence:
 - Mean time to remission, 14.3 weeks
 - Mean duration of remission, 40.5 ± 23.2 months
- At 10 years of follow-up, 40.5% of patients remained in remission
- Study also included patients with T1D T2D, and controls (see Figure)

Ten-year beta-cell secretory reserve following early intensive insulin therapy, with T1D or T2D (with or without KP in T2D) and controls

ID, insulin-dependent; KP, ketosis-prone; NID, non-insulin dependent; T1D, type 1 diabetes; T2D, type 2 diabetes.

Characteristics of Basal Insulins

- Typically administered as a single daily dose, they can be added to oral agents.^{1,2}
- They restrain hepatic glucose production and limit between-meal and overnight hyperglycemia.¹
- Basal insulin analogs are preferred over NPH insulin because a single basal analog dose provides a relatively flat serum insulin concentration for ≥24 hours.²
- Long-acting basal analogs (glargine U100 or detemir) have been shown to reduce the risk of symptomatic and nocturnal hypoglycemia vs NPH insulin.^{1,2}
- The newest ultralong-acting basal insulin formulations (glargine U300, degludec U100, and U200) have more prolonged and stable pharmacokinetic and pharmacodynamic characteristics than glargine U100 and detemir.²
 - They may confer lower hypoglycemia risk.^{1,2}
 - Degludec U200 and glargine U300 are more concentrated than their U100 formulations, allowing for higher doses of basal insulin administration per volume injected.¹
- Regular U-500 insulin has delayed onset and a longer duration of action; it functions similarly to an intermediate-acting (NPH) insulin and can be used as 2 or 3 daily injections.¹

Available Basal Insulins

	NPH Insulin ¹⁻²	Insulin Glargine* ^{1,3-4}	Insulin Detemir ⁵⁻⁶	Glargine U300 ⁷⁻⁸	Insulin Degludec U100 and U200 ⁹
Insulin type	Human; intermediate-acting	Analog; long-acting	Analog; long-acting	Analog; ultralong-acting	Analog; ultralong-acting
Onset	1-2 hours	1.5 hours	3-4 hours	6 hours	1 hour
Peak	4-10 hours	Flat	Relatively flat	Flat	Flat
Effective duration	14+ hours	≤24 hours	≤24 hours	≤36 hours	≤42 hours
Half-life	Unknown	12.5 hours	5-7 hours	17-19 hours	~25 hours
Steady state	Unknown	2-4 days	2 days	3-4 days	3-4 days

^{*} Pharmacodynamic properties of biosimilar insulin glargine are similar to that of insulin glargine.

^{1.} Donner T, et al. In: *Endotext*. South Dartmouth (MA): MDText.com, Inc. 2. Humulin N (isophane insulin human suspension) [prescribing information]. Lilly USA; 2019. 3. Heise T, et al. *Endocrine Abstracts*. 2012;28:188. 4. Lantus® U-100 Summary of Product Characteristics. Sanofi; updated March 24, 2020. 5. Levemir® (insulin detemir injection) [prescribing information]. Novo Nordisk Inc.; 2020. 6. Bott S, et al. *Diabet Med*. 2006;23(5):522-528. 7. Toujeo® (insulin glargine injection) U-300 [prescribing information]. Sanofi-Aventis US LLC; 2019. 8. Rosselli JL, et al. *J Pharm Technol*. 2015;31(5):234-242. 9. Tresiba® (insulin degludec injection) [prescribing information]. Novo Nordisk Inc.; 2019.

Basal Insulin Action Profiles

Mathieu C, et al. *Nat Rev Endocrinol*. 2017;13:385-399.

Median Cost of Insulin Products in the US

Average Wholesale Price per 1,000 Units of Specified Dosage Form/Product¹

Compound	Dosage form/product	AWP
Lispro follow-on	U-100 vial	\$157
product	U-100 prefilled pen	\$202
Lispro	U-100 vial U-100 3 mL cartridges	\$330 \$408
2.501.0	U-100 prefilled pen	\$424
	U-200 prefilled pen	\$424
Glulisine	U-100 vial	\$341
Aspart (original and	U-100 prefilled pen U-100 vial	\$439 \$347
faster-acting)	U-100 3 mL cartridges	\$430
<u>G</u>	U-100 prefilled pen	\$447
Inhaled insulin	Inhalation cartridges	\$924
Human regular	U-100 vial	\$165
Human NPH	U-100 vial	\$165
	U-100 prefilled pen	\$377
U-500 human regular	U-500 vial	\$178
insulin	U-500 prefilled pen	\$230
Glargine follow-on	U-100 prefilled pen	\$261
Glargine	U-100 vial; U-100 prefilled pen U-300 prefilled pen	\$340 \$346
Detemir	U-100 vial; U-100 prefilled pen	\$370
Degludec	U-100 vial; U-100 prefilled pen	\$407
	U-200 prefilled pen	\$407

- Insulin cost has steadily risen over past 2 decades, burdening patients and contributing to nonadherence.¹
- Some PAPs provide low/no-cost insulin products.²
- Human insulins are available for ~\$25/vial at Walmart and Sam's Club.³
- Some prices are temporarily lowered due to COVID-

Drug Category	Compound	Dosage form/product	AWP
Premixed insulin products	NPH/regular 70/30 Lispro 50/50 Lispro 75/25 Aspart 70/30	U-100 vial U-100 prefilled pen U-100 vial U-100 prefilled pen U-100 vial U-100 prefilled pen U-100 prefilled pen U-100 vial U-100 prefilled pen	\$165 \$377 \$342 \$424 \$342 \$424 \$360 \$447
Premixed insulin/GLP-1 RA products	Glargine/lixisenatide Degludec/liraglutide	100/33 prefilled pen 100/3.6 prefilled pen	\$565 \$832

1. American Diabetes Association. *Diabetes Care*. 2020;43(suppl 1):S1-S212. 2. https://www.healthline.com/health/insulin-medication-comparing-patient-assistance-programs#1. 3 https://www.thediabetescouncil.com/relion-insulin-everything-need-know/. 4. https://www.drugtopics.com/diabetes/insulin-affordability-options-expand-during-covid-19.

AWP, average wholesale price; COVID-19, coronavirus disease 2019; GLP-1 RA, glucagon-like peptide-1 receptor agonist; NPH, neutral protamine Hagedorn; PAP, patient assistance program.

Rapidacting

Short-acting

Intermediate -acting

Concentrated human regular

Long- and ultralong- acting

Adding/Intensifying Insulin in Patients With T2D

- When insulin becomes necessary, add a single daily dose of basal insulin to the regimen.
- Adjust dosage at regular and initially short intervals, measured in days, to achieve targeted glycemic goal while avoiding hypoglycemia.

BG, blood glucose; FBG, fasting blood glucose; NPH, neutral protamine Hagedorn; TDD, total daily dose.

Garber Al, et al. *Endocr Pract*. 2020;26(1):107-139.

START BASAL (Long-Acting Insulin)

A1C <8%

A1C >8%

TDD 0.1-0.2 U/kg

TDD 0.2-0.3 U/kg

Insulin titration every 2–3 days to reach glycemic goal:

- Fixed regimen: Increase TDD by 2 U
- · Adjustable regimen:
 - FBG >180 mg/dL: add 20% of TDD
 - FBG 140–180 mg/dL: add 10% of TDD
 - FBG 110–139 mg/dL: add 1 unit
- If hypoglycemia, reduce TDD by:
- BG <70 mg/dL: 10% 20%
- BG <40 mg/dL: 20% 40%

Start NPH insulin in the evening

Start longacting insulins in the evening or morning

Consider discontinuing or reducing sulfonylurea after starting basal insulin (basal analogs preferred to NPH)

*Glycemic Goal:

- <7% for most patients with T2D; fasting and premeal BG <110 mg/dL; absence of hypoglycemia
- A1C and FBG targets may be adjusted based on patient's age, duration of diabetes, presence of comorbidities, diabetic complications, and hypoglycemia risk

Avoiding Therapeutic Inertia During Treatment Intensification

Clinical or therapeutic inertia occurs when treatment is not initiated or intensified, despite a patient not achieving their A1C goal.¹

- All patients should be educated on the progressive nature of T2D.^{2,3}
- Avoid using insulin as a threat or sign of personal failure or punishment.^{2,4}
- Do not delay intensification if treatment is not meeting goals; timely glycemic control has a beneficial effect on patient outcomes.^{2,4}
- Reevaluate regimen every 3-6 months and adjust/intensify as needed.^{2,5}
- If goals not met with OADs, it is recommended to intensify treatment to injectable agent (GLP-1 RA or insulin).^{2,5}

GLP-1 RA, glucagon-like peptide-1 receptor agonist; OADs, oral antidiabetic drugs; T2D, type 2 diabetes.

Rates of Treatment Intensification and Non-intensification in Patients With T2D

Treatment intensification rates (by A1C) in the 6-month period following A1C ≥7%

- Retrospective electronic health records analysis of Cleveland Clinic patients (N=7389; 2005-2016)
- Overall, 63% did not receive therapeutic intensification in the 6 months following an elevated A1C measurement

Patient-Related Factors for Delaying Insulin Therapy

- Misconceptions
 - Progression to insulin signifies failure to control disease
 - Insulin is toxic, may lead to amputations, blindness, or other complications^{1,2}
- Fear of needles/injections, weight gain, hypoglycemia^{1,2}
- Lack of information, experience, and/or support managing insulin regimens^{1,2}
- Inconvenient, time-consuming¹
- Concerns about potential permanence of therapy²
- Complexity of regimen²
- Cost^{1,2}

Real-World Choices Depend on the Patient

- Key variables, factors to consider^{1,2}
 - Patient preference for simpler regimen
 - Frequency of self-monitoring of blood glucose
 - Lifestyle variability, including meal timing and carbohydrate intake
 - Presence of postprandial hyperglycemia
 - Patient's ability to follow the prescribed regimen
 - Educational and emotional support available to patient
 - Patient dexterity issues, age, visual impairment
 - Cost barriers, insurance coverage

Barriers to Insulin Therapy and Strategies to Overcome Them

Russell-Jones D, et al. Diabetes Obes Metab. 2018;20(3):488-496.

Available Delivery Routes for Insulin Administration

Subcutaneous

- Syringes
- Pens
- Disposable pods (basal/bolus)
 - V-Go® (1/day)
 - OmniPod DASH™ (2-3/day)
- Insulin pumps (basal/bolus)

Other methods

- Inhaled (Afrezza[®])
- Intravenous (hospital use)

Insulin Pens: One Strategy to Overcome Therapeutic Inertia

Advantages^{1,2}

- Convenience; syringe and vial combined in 1 device
- Improved patient satisfaction and adherence
- Greater dosing accuracy
- Ease of use
- Greater portability
- Mealtime flexibility
- Less reported pain
- Social acceptability and improved quality of life

Barriers³

- Potentially higher costs than insulin vials
- Insurance coverage

Basal Insulin in Combination With Non-insulins to Cover Postprandial Glucose Excursions

- A GLP-1 RA, SGLT2i, or DPP4i can be added to basal insulin to achieve glucose targets.¹
- When added to insulin, incretins and SGLT2 inhibitors enhance glucose reductions.¹
- Incretins and SGLT2 inhibitors may promote weight loss without increasing hypoglycemia risk.¹
 - Insulin dose reductions may be necessary to reduce hypoglycemia risk; monitor and adjust as approriate.²⁻³
- Incretins also increase endogenous insulin secretion in response to meals, reducing postprandial hyperglycemia.¹
- Basal insulin + a GLP-1 RA may offer greater efficacy than oral agents; fixed-ratio combinations are available.^{1,4}
 - Basal insulin dose may need to be reduced to avoid hypoglycemia.¹

DPP4i, dipetydl peptidase 4 inhibitor; GLP-1 RA, glucagon-like peptide-1 receptor agonist; SGLT2i, sodium-glucose cotransporter 2 inhibitor.

1. Garber AJ, et al. *Endocr Pract*. 2020;26(1):107-139. 2. Victoza[®] (liraglutide injection) [prescribing information]. Plainsboro, NJ: Novo Nordisk Inc.; 2019.

3. Jardiance[®] (empagliflozin) [prescribing information]. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc.; 2020. 4. American Diabetes Association. *Diabetes Care*. 2020;43(suppl 1):S1-S212.

Basal Insulin Plus Incretin Therapy in T2D: DPP-4 Inhibitors

- Systematic review of 5 RCTs evaluating DPP4i (ALO, SAXA, SITA, VILDA) combined with basal insulin in patients with T2D (N=1502)
- The combination of DPP4i with insulin improved glycemic control without excess hypoglycemia and with less weight gain than non-incretin-based therapies

Author, year	Fonseca, 2007	Rosenstock, 2009	Arnolds, 2010	Visboll, 2010	Nowicki, 2011
Intervention	VILDA + INS vs INS + PBO	ALO (12.5 mg) + INS ± MET vs ALO (25 mg) + INS ± MET vs PBO + INS ± MET	GLA + MET + EXE vs GLA + MET + SITA vs GLA + MET	SITA + INS ± MET vs INS ± MET + PBO	SAXA + INS ± OAD vs INS ± OAD + PBO in patients with CKD
All hypoglycemic episodes (major)	113 vs 185 (0 vs 6)	35 vs 35 vs 31* (0 vs 1 vs 6)	47 vs 12 vs 10 (0 vs 0 vs 0)	155 vs 76 (2 vs 1)	17 vs 19 (0 vs 2)

^{*} Number of patients reporting ≥1 event

ALO, alogliptin; CKD, chronic kidney disease; DPP4i, dipeptidyl peptidase 4 inhibitor; EXE, exenatide; GLA, glargine; INS, insulin; MET, metformin; OAD, oral antidiabetic drug; PBO, placebo; RCT, randomized controlled trial; T2D, type 2 diabetes; SAXA, saxagliptin; SITA, sitagliptin; VILDA, vildagliptin.

^{1.} Rizos EC, et al. Curr Vasc Pharmacol. 2013;11(6):992-1000.

Basal Insulin Plus SGLT2 Inhibitors in T2D

CANA RCT (N=2072, 18 weeks); patients inadequately controlled on insulin ± OADs

 A1C change with CANA 100 and 300 mg vs PBO: -0.6% and -0.7%; (P<0.001 for both)¹

EMPA RCT (N=563, 52 weeks); patients inadequately controlled on insulin ± MET

 A1C change with EMPA 10 and 25 mg vs PBO: -0.4% and -0.5%; (P<0.001 for both)²

DAPA RCT (N=808, 104 weeks); patients inadequately controlled on insulin ± OADs

A1C change with DAPA 5mg/10mg and 10 mg vs PBO: -0.4% and -0.5%; (P<0.001 for both)³

In the CANA and EMPA studies, patients treated with SGLT2i had statistically significant weight loss vs PBO^{1,2}

^{2.} Rosenstock I. et al. *Diabetes Care*. 2014:37:1815-1823.

a 18 weeks; BL A1C 8.3% (mean); basal, bolus, or basal-bolus; ≈60% to 65% on basal-bolus; b 52 weeks; BL A1C 8.29%-8.39%; multiple daily insulin (basal-bolus) injections, insulin titrated weeks 19 to 40; $^{\rm c}$ 104 weeks; BL A1C 8.46%-8.62%; 17% on basal only, 83% on bolus or basal-bolus (≈48% basal-bolus, ≈35% bolus only).

BL, baseline; CANA, canagliflozin; DAPA, dapagliflozin; EMPA, empagliflozin; MET, metformin; OAD, oral antidiabetic drug; PBO, placebo; RCT, randomized controlled trial; SLGT2i, sodium-glucose cotransporter-2 inhibitor.

^{3.} Wilding J, et al. *Diabetes Obes Metab*. 2014;16:124-136.

Basal Insulin Plus Incretin Therapy in T2D: GLP-1 RAs

Systematic review (RCTs and real-world studies), representing ~5000 patients with T2D

- Review analyzed the safety and efficacy of insulin + GLP-1 RA combination therapy.
- Combination therapy improved glycemic control without increased weight gain or hypoglycemia.
- Relative treatment benefit was influenced by insulin titration patterns.
 - Aggressive insulin titration to optimize glycemic control yielded less weight loss benefit.
 - Insulin sparing was associated with greater weight loss but more modest glycemic control.

GLP-1 RA, glucagon-like peptide-1 receptor agonist; RCT, randomized controlled trial; T2D, type 2 diabetes. Balena R, et al. *Diabetes Obes Metab*. 2013;15(6):485-502.

Fixed-Ratio Combinations of Basal Insulin and GLP-1 RA

- iGlarLixi 100/33
- Insulin glargine and lixisenatide injection
- Approved by FDA November 2016
- Indication: Adults with T2D inadequately controlled on basal insulin (<60 units daily) or lixisenatide
- 1 unit contains:
 - 1 U insulin glargine and
 - 0.33 mcg lixisenatide
- Administered SC once daily
- Starting dose: 15 or 30 units (15 or 30 U insulin glargine and 5 or 10 mcg lixisenatide)
- SoloStar® pen

- iDegLira 100/3.6
- Insulin degludec and liraglutide injection
- Approved by FDA November 2016
- Indication: Adults with T2D inadequately controlled on basal insulin (<50 units daily) or liraglutide
- 1 unit contains:
 - 1 U insulin degludec and
 - 0.036 mg liraglutide
- Administered SC once daily
- Starting dose: 16 units (16 U insulin degludec and 0.58 mg liraglutide)
- FlexTouch® pen

FDA, US Food and Drug Administration; GLP-1 RA, glucagon-like peptide-1 receptor agonist; iDegLira, insulin degludec and liraglutide; iGlarLixi, insulin glargine and lixisenatide; SC, subcutaneous; T2D, type 2 diabetes.

Glucose Control With Fixed-Ratio Combinations of Basal Insulin and GLP-1 RA

Phase 3 RCTs in patients with T2D showed improved glycemic control with fixedratio basal insulin and GLP-1 RA combination compared with individual components administered alone

^{*} Per protocol maximum dose: 50 units/day (no maximum dose of degludec alone was specified in the insulin naïve trial). *Per protocol maximum dose: 60 units/day.

GLP-1 RA, glucagon-like peptide-1 receptor agonist; iDeg, insulin degludec; iDegLira, insulin degludec and liraglutide; iGlar, insulin glargine; iGlarLixi, insulin glargine and lixisenatide; Lira, liraglutide; Lixi, lixisenatide; NI, noninferior; OA, oral agent; S, superior; T2D, type 2 diabetes.

^{1.} Gough SC, et al. Lancet Diabetes Endocrinol. 2014;2:885-893. 2. Buse JB, et al. Diabetes Care. 2014;37:2926-2933. 3. Rosenstock J, et al. Diabetes Care. 2016;39:2026-2035. 4. Aroda VR, et al. Diabetes Care. 2016;39:1972-1980.

When Basal Insulin Is Not Enough to Control Glycemia

 Patients whose glycemia remains uncontrolled while receiving basal insulin in combination with oral agents or GLP-1 RAs may require mealtime insulin to cover postprandial hyperglycemia.^{1,2}

Basal Plus Prandial

Prandial insulin added to 1, 2, or 3 meals¹

Basal-Bolus

Prandial insulin added to every meal¹

Premixed

Combination shortand intermediateacting insulin²

DPP4i, dipetydl peptidase 4 inhibitor; GLP-1 RA, glucagon-like peptide-1 receptor agonist; SGLT2i, sodium-glucose cotransporter 2 inhibitor.

Prandial Insulin Intensification

- Consider prandial insulin when basal insulin TDD is >0.5 U/kg¹
 - Beyond this dose, hypoglycemia risk increases without A1C benefit¹
- Basal plus: Cover largest meal with prandial insulin; add additional meal coverage in stepwise fashion, as needed^{1,2}
 - Rapid-acting injectable insulin analogs and inhaled insulin associated with less hypoglycemia than regular human insulin¹
- Basal-bolus: Most effective insulin regimen¹
 - Greater flexibility for patients who have variable mealtimes and/or meal carbohydrate content¹
 - Associated with weight gain; MDI and cost may impede adherence^{1,3}
- Titrate dose based on blood glucose and formulation PD profile²
- Some oral agents may need to be discontinued²

BG, blood glucose; h, hour; MDI, multiple daily injections; PD, pharmacodynamic; TDD, total daily dose. 1. Garber AJ, et al. *Endocr Pract*. 2020;26(1):107-139. 2. American Diabetes Association. *Diabetes Care*. 2020;43(suppl 1):S1-S212. 3. Wallia A, et al. *JAMA*. 2014;311(22):2315-25.

INTENSIFY (Prandial Control)

Add Prandial Insulin

Basal Plus 1, Plus 2, Plus 3

Basal Bolus

- Begin prandial insulin before largest meal
- If not at goal, progress to injections before 2 or 3 meals
- Start: 10% of basal dose or

5 units

- Begin prandial insulin before each meal
- 50% Basal / 50% Prandial TDD 0.3–0.5 U/kg
- Start: 50% of TDD In three doses before meals

Insulin titration every 2-3 days to reach glycemic goal:

- Increase prandial dose by 10% or 1-2 units if 2-h postprandial or next premeal glucose consistently >140 mg/dL
- If hypoglycemia, reduce TDD basal and/or prandial insulin by:
- BG consistently <70 mg/dL: 10% 20%
- Severe hypoglycemia (requiring assistance from another person) or BG <40 mg/dL: 20% - 40%

Available Prandial Insulins

		Insulin Lispro ^{1,2,3}		Insulin Aspart ^{1,4,5}		Insulin Glulisine ^{1,6}	Regular Human Insulin ^{1,2}	Inhaled Insulin ⁷
	nsulin ype	Analog; rapid-acting	Analog; faster- acting	Analog; rapid-acting	Analog; faster-acting	Analog; rapid-acting	Human; short-acting	Analog; rapid-acting
(Onset	≤15 minutes	~17 minutes	≤15 minutes	≤5 minutes	0.25-0.5 hours	1 hour	~12 minutes
F	eak	1 hour	~2 hours	1-3 hours	1 hour	0.5-1 hour	2-4 hours	35-55 minutes
_	ffective luration	3-5 hours	5-6 hours	3-5 hours	3-4 hours	4 hours	5-8 hours	1.5-3.0 hours
ŀ	lalf-life	1 hour	44 minutes	1.4 hours	1.1 hours	42 minutes	1.5 hours	2.0-3.5 hours

Responses to inhaled insulin are dose-dependent
Only consider inhaled insulin on an individual basis
Dose conversion is required, as is initial and ongoing evaluation of lung function
Contraindicated in patients with chronic lung disease⁷

1. Donner T, et al. In: Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. 2. Humalog (insulin lispro injection, USP [rDNA origin]) [prescribing information]. Indianapolis, IN: Lilly USA, LLC; 2007. 3. Lyumjev™ (insulin lispro-aabc) injection [prescribing information]. Indianapolis, IN: Eli Lilly and Company; 2020. 4. NovoLog® (insulin aspart injection) [prescribing information]. Plainsboro, NJ: Novo Nordisk Inc.; 2019. 5. Fiasp® (insulin aspart injection) [prescribing information]. Plainsboro, NJ: Novo Nordisk Inc.; 2020. 6. Apidra® (insulin glulisine [rDNA origin] injection) [prescribing information]. Bridgewater, NJ: Sanofi-Aventis US LLC.; 2008. 7. Afrezza® (insulin human) Inhalation Powder [prescribing information]. Danbury, CT: MannKind Corporation; 2019.

Prandial Insulin Action Profiles

Adapted from: 1. Freeman JS. *JAOA*. 2009;109(1):26-36; 2. Heise T, et al. Diab Obes Metab. 2020; EPUB. 2. Afrezza® (insulin human) Inhalation Powder [prescribing information]. Danbury, CT: MannKind Corporation; 2019.

A1C Reductions and Hypoglycemia With Inhaled Insulin (Afrezza®)

- A1C reductions with inhaled insulin were significantly greater than placebo.¹
- Patients taking inhaled insulin had a higher incidence of hypoglycemia vs placebo.¹
 - All events, 67.8% vs 30.7%;
 P<0.0001
 - Severe events, 5.7% vs 1.7%; *P*=0.09.
- Patients receiving inhaled insulin weight gain (~1 lb) vs weight loss (~2.4 lb) with placebo (P<0.0001).¹
- Coughing was most common adverse event with inhaled insulin.^{1,2}

Double-blind, 24-week RCT (N=176) comparing prandial inhaled insulin vs prandial inhaled placebo (patients with T2D)¹

RCT, randomized controlled trial; T2D, type 2 diabetes.

^{1.} Rosenstock J, et al. *Diabetes Care.* 2015;38:2274-2281. 2. Afrezza® (insulin human) Inhalation Powder [prescribing information]. Danbury, CT: MannKind Corporation; 2019.

Inhaled Insulin, Dose Conversion Table

Injected 🚪	Inhaled	# of Cartridges Needed		
Mealtime 😈 📗 Insulin Dose 🗜	Insulin Dose	4 unit (blue)	8 unit (green)	12 unit (yellow)
up to 4 units	4 units			
5-8 units	8 units			
9-12 units	12 units	+	or/	
13-16 units	16 units			
17-20 units	20 units		+	
21-24 units	24 units			

Basal-Bolus Insulin Regimens in T2D

Advantages¹

 Effective in approximately two-thirds of patients in achieving A1C goals

Disadvantages^{2,3}

- Multiple injections
- Low adherence
- Potential for weight gain
- Hypoglycemia risk

^{1.} Bergenstal RM, et al. *Diabetes Technol Ther*. 2019:21(5)273-285. 2. Garber AJ, et al. *Endocr Pract*. 2020;26(1):107-139.

^{3.} American Diabetes Association. Diabetes Care. 2020;43(suppl 1):S1-S212.

The Basal-Bolus Approach to Insulin Delivery

Achievement of A1C <7% with Basal-Bolus Insulin Regimens in T2D

- Systematic review of 8 RCTs (N=2114) evaluated effectiveness of basal-bolus insulin regimens
- A1C <7% achieved in 53.9% (95% CI: 43.5%, 64.0%)
- Hypoglycemic events (mean/patient/30 days): 0.88 (95% CI: 0.35, 1.3)
- Weight gain: 2.8 kg (95% CI: 1.8, 3.7)
- Escalation from basal to basal-bolus increases success rate in an additional ~12%-14% of patients

CI, confidence interval; RCT, randomized controlled trial. Giugliano D, et al. *Res Clin Pract*. 2011;92(1):1-10.

Premixed Insulin Analogues in Patients With T2D

Premixed insulin combines long- and short-acting insulin in a single formulation

Benefits^{2,4}

- Simple and convenient (twice-daily administration)
- Basal-bolus in 1 medication

Initiation and Titration

- Insulin naïve patients →10-12 units or 0.3 u/kg⁴
- Split dose (50/50 morning and evening)⁴
- Existing basal → unit-to-unit conversion
- Existing basal-bolus → reduce TDD by 20%-30%⁴
- Titrate 1-2 units, or 10%-15%, 1-2x weekly, until goal⁴
- Increase TDD by 10% if FPG or premeal blood glucose
 180 mg/dL^{1,4}

Disadvantages²

- Higher risk of hypoglycemia
- Less flexibility

Dose Adjustment⁴

Lowest pre-meal blood glucose level	Adjustment for next dose	
≥126 mg/dL	+2 units	
73-124 mg/dL	0	
≤72 mg/dL	-2 units	

FPG, fasting plasma glucose; T2D, type 2 diabetes; TDD, total daily dose.

1. Handelsman Y, et al. *Endocr Pract*. 2015;21(S1). 2. Garber AJ, et al. *Endocr Pract*. 2020;26(1):107-139. 3. American Diabetes Association. *Diabetes Care*. 2020;43(suppl 1):S1-S212. 4. Wu T, et al. *Diabetes Ther*. 2015;6(3):273-287.

INITIATE Study: More Patients With T2D Reached A1C Target With BIAsp 70/30 Than Glargine

- 28-week randomized, open-label, treat-to-target study
- The efficacy and safety of BIAsp 70/30 were compared with oncedaily insulin glargine in patients with T2D (N=209) inadequately controlled on OADs
- Significantly more BIAsp 70/30 patients reached target A1C vs glargine patients
 - A1C <7.0%: 66% vs 40%
 - A1C ≤6.5%: 42% vs. 28%

Insulin Pump Therapy in Patients With T2D

According to AACE Guidelines, insulin pump therapy may improve QoL and can be considered in patients with T2D who are insulin-dependent and not meeting glycemic goals with MDIs

Ideal Candidates

- Motivated to achieve optimal glycemic control
- Currently performing ≥4 daily insulin injections and ≥4 SMBG measurements
- Able and willing to safely and effectively use this complex and time-consuming therapy
- C-peptide positive, but with suboptimal control using maximized basal-bolus injections
- Trained in carbohydrate counting and to calculate insulin correction doses
- Willing to maintain frequent contact with health care team

Poor Candidates

- Not motivated to achieve glucose control
- Unwilling to perform frequent MDI or SMBG
- Previous nonadherence to insulin injections
- Unrealistic expectations of pump therapy
- Belief that pump use will remove patient responsibility for diabetes management
- Concerned that pump will interfere with lifestyle (eg, sports or sexual activity)
- History of serious psychiatric conditions (eg, psychosis, severe depression)

AACE, American Association of Clinical Endocrinologists; MDI, multiple daily injection; QoL, quality of life; SMBG, self-monitoring of blood glucose; T2D, type 2 diabetes.

U-500R Insulin Therapy

- U-500 is a highly concentrated human insulin, introduced in 2016;¹
 it is potentially appropriate for the following patients:
 - Require >200 units of insulin per day²⁻⁶
 - With T2D and obesity and/or severe insulin resistance³⁻⁵
 - With gestational diabetes and severe insulin resistance^{3,4}
 - Postoperative or post-transplant⁴ or on high-dose glucocorticoid therapy³⁻⁵
 - With severe systemic infection³⁻⁵
 - With genetic defects of insulin action and rare forms of immune-mediated diabetes, such as anti-insulin receptor antibodies (type B insulin resistance syndrome)³⁻⁶

T2D, type 2 diabetes; U-500R, human regular U-500 insulin.

Cardiovascular Safety of Insulin ORIGIN Trial: Early Use of Insulin Glargine in Patients With T2D or Prediabetes

- RCT of patients (N=12,537)
 with T2D, IGT, or IFG, at high
 CV risk, and treated with
 insulin glargine vs SOC.
- CV outcomes were similar for both groups over a median 6.2 years of followup.
- SH rates were higher with insulin glargine vs SOC (1.0 vs 0.3 per 100 PY).

CHF, congestive heart failure; CV, cardiovascular; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; ORIGIN, Outcome Reduction with Initial Glargine Intervention; PY, person-years; RCT, randomized controlled trial; SH, severe hypoglycemia; SOC, standard of care; T2D, type 2 diabetes.

Cardiovascular Safety of Insulin DEVOTE Trial: Efficacy and Safety of Insulins Degludec vs Glargine in Patients With T2D

RCT of patients (N=7367) with T2D; 85% with established CVD or CKD

- Degludec was noninferior vs glargine for major CV outcomes
- Degludec significantly reduced hypoglycemia rates vs glargine

Primary Composite Outcome (MACE)

Severe Hypoglycemia

CI, confidence interval; **CKD**, chronic kidney disease; **CV**, cardiovascular; **CVD**, cardiovascular disease; **MACE**, major adverse cardiovascular event; **RCT**, randomized controlled trial; **T2D**, type 2 diabetes.

Hypoglycemia With Insulin Therapy: Risks Associated With Hypoglycemia

- Hypoglycemia is a common side-effect of insulin therapy.
- Hypoglycemia and the fear of hypoglycemia limit patients' ability to achieve and maintain optimal glycemic control.
- Severe and prolonged hypoglycemia increases morbidity and mortality.

Organ/System	Consequence
Heart	Abnormal prolonged cardiac repolarization Cardiac arrythmia Myocardial ischemia Sudden death
Eyes	Vitreous hemorrhage Worsening of retinopathy
Central nervous system	Cognitive dysfunction Brain damage, intellectual decline Unusual behavior Seizure, coma Transient ischemic attack, stroke Focal neurological lesions (rare)
Other	Falls Accidents with injury

Hypoglycemia Risk Factors in Patients With T2D

Impaired hypoglycemia awareness increases subsequent hypoglycemia risk by ~5-fold

1. Diabetes complexity

- Diabetes duration
- Impaired hypoglycemia awareness
- · High glycemic variability
- Prior hypoglycemic events Severe and non-severe
- Glycemic control
 U-shaped relationship with HbA_{1c}
- Fear of hypoglycemia
- · Fear of hyperglycemia

HYPOGLYCEMIA

RISK

2. Multi-morbidity

- · Functional impairment, frailty
- Comorbid health conditions:
 Microvascular complications
 (autonomic, peripheral, and cardiovascular neuropathy; retinopathy), kidney disease, cardiovascular disease, heart failure, cerebrovascular disease, liver disease, lung disease, depression.
- Cognitive impairment, dementia

3. Pharmacotherapy

- High risk medications: Insulin, sulfonylurea
- · Glucose-lowering polypharmacy
- Non-diabetes medications Example: beta blockers
- · Complex treatment regimens
- Medication misadventures
 Dosing errors, discordance with meals, etc.

4. Patient context and environment

- Inadequate caregiver support or supervision
- Food insecurity
- Poor health literacy
- Financial burden
- Non-clinical or competing clinical demands
- Fasting, either for medical tests/procedures or personal/religious reasons Example: Ramadan

5. Healthcare system

- Performance measurement, reporting, and benchmarking that focus on lowering HbA_{1c}
- · Inadequate diabetes support/resources, including DSME and clinical monitoring
- · Payer decisions regarding DSME, glucose monitoring, drug formulary, and diabetes technologies
- Lack of integration of patient health information, including glucose monitoring data and self-reported hypoglycemia, into clinical EHR

Less Hypoglycemia With Insulin Glargine and Detemir vs NPH Insulin

Data from 6 RCTs used to model hypoglycemia rates with insulin glargine vs NPH in 3656 patients with T2D¹

26-week RCT comparing insulin detemir vs NPH as add-on to OADs in 475 insulin-naïve patients with T2D²

Association between confirmed hypoglycemia (<65 mg/dL)* and end-ofstudy A1C (P=0.021)

*Per 100 personyears

Relationship between confirmed hypoglycemia incidence and A1C (previous 12 weeks and at study end) (P<0.001)

Rates of Hypoglycemia Lower With Insulin Degludec vs Insulin Glargine

Meta-analysis of 5 trials in patients with T2D (N=3372) in the iDeg development program, comparing iDeg once daily to iGlar once daily^{1,2}

iDeg, insulin degludec; iGlar, insulin glargine; T2D, type 2 diabetes.

- 1. Ratner RE, et al. *Diabetes Obes Metab.* 2013;15:175-184.
- 2. Vora J, et al. Diabetes Res Clin Pract. 2015;109:19-31.

Overall confirmed hypoglycemia episodes

Nocturnal confirmed hypoglycemia episodes

Severe hypoglycemia episodes

Nocturnal Hypoglycemia Lower With Insulin Glargine U300 vs Glargine U100 in Patients With T2D

Noct

Multicenter, randomized, open-label, 2-arm, parallel-group, TTT trials

Meta-analysis (12 months) of adults with T2D randomized to Gla-300 or Gla-100

- EDITION 1: Insulin with or without metformin
- EDITION 2: Insulin in combination with other antihyperglycemic drugs
- EDITION 3: Insulin-naive

			<u>←</u>			
turnal (12 AM to 5:59 AM)	confirmed	(≤70 mg/dL), o	r SH			
	RR	95% CI				
A1C ≤7.0%	1.24	1.03-1.50				
A1C <7.5%	1.17	1.02-1.35	├			
A1C reduction ≥0.5%	1.18	1.04-1.33	├			
Anytime (24 hours) confirmed (≤70 mg/dL), or SH						
	RR	95% CI				
A1C ≤7.0%	1.18	0.84-1.67	•			
A1C <7.5%	1.26	0.97-1.67	—			
A1C reduction ≥0.5%	1.32	1.04-1.68	<u> </u>			

Favors

Gla-100

0.8

RR 95% CI

Favors

Gla-300

CI, confidence interval; Gla-100; insulin glargine 100 units; Gla-300, insulin glargine 300 units; RR, relative risk; SH, severe hypoglycemia; T2D, type 2 diabetes; TTT, treat-to-target.

Hypoglycemia Lower With Insulin Glargine U300 vs Glargine U100 in Patients With T2D

- EDITION 1, 2, and 3 meta-analysis compared the efficacy and safety of insulin Gla-300 (n=1247) vs Gla-100 (n=1249) over 6 months in patients with T2D.
- They found comparable mean A1C reductions, tolerability, and safety between treatment groups.
- There was less hypoglycemia with Gla-300:
 - Hypoglycemia at any time:
 Rate ratio (95% CI), 0.86 (0.77, 0.97); P=0.0116
 - Nocturnal hypoglycemia:
 Rate ratio (95% CI), 0.69 (0.57, 0.84); P=0.0002

Cumulative, mean hypoglycemic events (confirmed and/or severe)

Open-Label, Randomized Trials Evaluating Hypoglycemia in Patients With T2D Using LixiLan (FRC of iGlar + Lixisenatide)

LixiLan-O Trial: Patients with T2D inadequately controlled on oral agents (insulin-naïve) randomized to iGlarLixi, iGlar, or Lixi1

LixiLan-L Trial: Patients with T2D inadequately controlled on basal insulin and metformin randomized to iGlarLixi or iGlar²

- 1. Rosenstock J, et al. *Diabetes Care.* 2016;39:2026-2035.
- 2. Aroda VR, et al. Diabetes Care. 2016;39:1972-1980.

Novel and in Development: Hepatic-Directed Vesicle Insulin for Prandial Use

- HDVI uses a hepatocyte-targeting moiety to improve the hepatic distribution of subcutaneous insulin.
- This multicenter, randomized, 6-month study compared HDVI vs insulin lispro (N=176 patients with T1D).
- Overall, A1C reductions met a preset noninferiority margin—no significant differences between treatments for insulin dosage or hypoglycemia.
- Specific to patients with baseline A1C ≥8.5%:
 - Severe hypoglycemia incidence in the HDVI and lispro arms were 69 and 97 events per 100 person-years (*P*=0.03).
 - Insulin dosages were reduced by 25% in patients who received HDVI vs lispro (P=0.02), despite similar A1C outcomes.

Novel and In Development:

A Jet Injector, Needle-Free Delivery System

Postprandial glucose and insulin concentrations following insulin aspart administration via jet injector or pen; Chinese patients with T2D (N=60)

Postprandial glucose concentration

(mmol/L)

Postprandial insulin concentration (µlU/mL)

InsuJet™ uses a highpressure narrow jet to penetrate the skin.

Insulin disperses into subcutaneou s adipose tissue with ≥90% efficiency and minimal skin injury and pain.

T2D, type 2 diabetes. Guo L, et al. *Medicine (Baltimore)*. 2017;96(1):e5482.

Novel and In Development: Long-Lasting, Glucose-Responsive ("Smart") Insulin

Smart Insulin is longeracting than injected insulin. It remains inactive until low blood glucose is detected; insulin action ceases once blood glucose normalizes.

Multiple products are under investigation. Barriers to successful development have included device materials, immune response, and other efficacy and safety concerns.¹

- 1. http://thejdca.org/2018-smart-insulin-an-overview-of-all-projects. 2. Yu J, et al. *Nat Biomed Eng*. 2020;4(5):499-506.
- 3. https://aibn.uq.edu.au/article/2017/02/nano-implants-remove-pain-diabetes-injections. 4. https://www.oramed.com/technology/. 5. https://plan.core-apps.com/tristar_ada20/abstract/85ae6435-8bc5-4429-8ad8-de44bdeaf718. 6. Rosenstock J, et al. Oral insulin (ORMD-0801) effects on glucose parameters in uncontrolled T2DM on OADs. ADA 80th Scientific Sessions. 7. Matsumoto A, et al. *Sci Adv.* 2017;3(11):eaaq0723. 8. Matsumoto A, et al. *Commun Biol.* 2020;3(1):313.

Patch

- Adhesive patch placed on skin; delivers insulin via glucose-sensitive microneedles¹
- Potential duration of action: ~1 day²
- Development status: Animal testing²

Nanoimplant

- Battery-operated device, inserted under skin; contains insulin-loaded nanoparticles^{1,3}
- Potential duration of action: Several months³
- Development status: Animal testing³

Oral

- Prevents gastrointestinal protein-drug breakdown; permits small intestine permeation⁴
- Duration of action: 1 day^{5,6}
- Development status: Phase 2^{5,6}

Gel

- Closed-loop, insulin/boronate gel-based system^{7,8}
- Gel dehydrates in response to osmotic pressure, signaling low blood glucose and triggering insulin diffusion⁸
- Potential duration of action: ~1 week
- Development status: Early animal research^{7,8}

Summary

- As T2D is progressive in nature, many patients eventually require insulin therapy.
- The choice of initial insulin should be individualized and guided by patient characteristics; however, initiating insulin therapy with a single daily dose of basal insulin is the preferred approach.
- Some evidence suggests that short-term, early intensive insulin treatment may improve glycemic control and preserve beta-cell function in newly diagnosed T2D patients with severe and symptomatic hyperglycemia.
- Patients whose glycemia remains uncontrolled with basal insulin and other oral agents may require the progressive addition of mealtime (prandial) insulin or a GLP1-RA.
- Intensification of insulin therapy should not be delayed if the patient is not meeting goals.
- Newer insulin analogs have similar cardiovascular risk profiles and reduced hypoglycemia rates compared to older insulin formulations.
- Future technology advances and routes for insulin delivery are likely to make insulin more user-friendly, patient-specific, and convenient.

Contributors

- AACE would like to thank the following endocrinologists for their contributions.
 - Dr. Georgia Davis, MD
 - Dr. Amit Gupta, DNB, FACP, FRCP (Glasg), FRCP (Edin)
 - Dr. Victor Roberts, MD, FACE, MBA, FACP
 - Dr. Vijay Shivaswamy, MBBBS

