Financial Impact of Inpatient Glycemic Control

Opportunities for Clinical and Financial Improvement

Diabetes and Inpatient Costs Higher rate of hospitalization Chronic complications More arteriosclerotic disease **Complicated pregnancies Increased costs Diabetes** —> Longer lengths of stay of hospitalization More medications More procedures More infections

Newton C, et al. *Endocr Pract.* 2006;12(suppl 3):43-48. AACE Inpatient Glycemic Control Resource Center

Diabetes and Hospitalization: Scope of the Problem

- The total estimated cost of diabetes in 2007 was \$174 billion, with \$116 billion attributed to excess medical expenditures¹
 - The largest component of medical expenditures attributed to diabetes was hospital inpatient care (~50% of costs)
- Diabetes ranked #2, after circulatory diseases, as a hospital discharge diagnosis in 2009²
 - Diabetes made up 12% of all first-listed diagnosis ICD-9-CM Codes
 - N=688,000 patients

3.4 million inpatient-days

Average length of stay: 5.0 days

1. CDCD. National diabetes fact sheet, 2011. Atlanta, GA: US Dept HHS, CDCP; 2011.

2. http://www.cdc.gov/diabetes/statistics/hosp/adulttable1.htm.

AACE Inpatient Glycemic Control Resource Center

Glucose Abnormalities Are Common in Hospitalized Patients

	Critically III	Noncritically III	
Hyperglycemia (BG >180 mg/dL)	32.2% patient-days	32.0% patient-days	
Hypoglycemia (BG <70 mg/dL)	6.3% patient-days	5.7% patient-days	
son CM, et al. <i>Endocr Pract</i> . 2011;17:853	3-861.		

AACE Inpatient Glycemic Control Resource Center

Swar

Impact of Hyperglycemia and Diabetes in the Hospital

- Hyperglycemia on general medical or surgical units is associated with
 - 18-fold increase in in-hospital mortality
 - Longer length of stay
 - More subsequent nursing home care
 - Greater risk of infection

 Hyperglycemia, with or without prior diagnosis of diabetes, increases in-hospital mortality and congestive heart failure in patients with acute myocardial infarction

Umpierrez G, et al. *J Clin Endocrinol Metab.* 2002;87:978-982; Capes SE, et al. *Lancet.* 2000;355:773-778. AACE Inpatient Glycemic Control Resource Center

Inpatient Hospital Costs Account for Greatest Proportion of Health Care Expenditures for Patients With Diabetes

Of \$116 billion attributed to excess medical expenditures, hospital inpatient days account for ~50% of dollars spent: >\$58 billion

Admission Hyperglycemia Affects Costs in Acute Ischemic Stroke

- 656 acute ischemic stroke patients admitted to one hospital 7/93-6/98
- Hyperglycemia present in 40%
 - More likely to have prior diagnosis of diabetes
 - Most remained hyperglycemic during stay
 - Mean BG=206 mg/dL
 - 43% did not receive inpatient hypoglycemic drugs
- Longer length of stay (7 vs 6 days, P=0.015)
- 30-day mortality risk (HR 1.87, *P*<0.01)
- Higher hospital charges (\$6611 vs \$5262, *P*<0.001)

Level of Glycemia Impacts Length of Stay (LOS)

Brody School of Medicine , East Carolina University: 1574 CABG patients

- Each 50 mg/dL increase in perioperative BG level*
 - Added 0.76 days to LOS
 - Increased hospital cost by \$2824

Portland Diabetic Project: 5510 CABG patients, 1987-2005

- Each 50 mg/dL increase in 3-BG** level added 1 day to LOS
 - Treatment-induced LOS savings: 1.8 days/patient
 - Actual non-OR charge for 1 CABG LOS day = \$1150
 - Savings from use of intensive insulin protocol, 1.8 x 1150 = \$2081

* Perioperative BG = average of day of and day after surgery.
** 3-BG: 3-day average perioperative blood glucose.
Both studies: Levels measured up to >250 mg/dL; lowest level measured <150 mg/dL, no threshold effect specified.

Estrada et al. *Ann Thorac Surg.* 2003;75:1392-1399; Furnary, et al. *Endocr Pract.* 2006;12(Suppl 3):22-26. AACE Inpatient Glycemic Control Resource Center

Patients With Comorbid Diabetes Have Longer Lengths of Stay Than When Diabetes Is Not a Complicating Factor

Average hospital length of stay (ALOS) when diabetes is a secondary diagnosis

Potentially Preventable Hospitalizations Associated With Uncontrolled Diabetes

		Hospitalizations estimated from the NHDS-2004			Hos	Hospitalizations estimated from the HCUP-NIS		
Uncontrolled di diagnosis (ICD-9-CM code	iabetes e)	Total ad CI)	missions (95%	Tota rein (\$ m	Il hospital nbursement nillions)	Tota (n)	al admissions	Total charge (\$ millions)
Without compli (250.02-250.03	cations 5)	52,798 (43,976-	61,620)	722		52,2	294	552
With ketoacidos (250.10-250.13)	sis)	119,174 (104,48	5-33,863)	137	2	124	,510	1821
With hyperosm (250.20-250.23	olarity 5)	14,984 (10,601-	-19,367)	201		14,	572	298
With diabetic co (250.30-250.33)	oma)	4225 (1948-65	502)	84		494	8	164
Total		191,181 (170,786	5-211,576)	238	0	196	,324	2836

Kim S. *Diabetes Care*. 2007;30:1281-1282.

AACE Inpatient Glycemic Control Resource Center

Readmission Rates Higher for Patients With Diabetes

- Among 48,612 patients with congestive heart failure from 259 hospitals, 42% had diabetes
- All-cause rehospitalization was significantly greater for patients with diabetes than for patients without diabetes (31.5% vs 28.2%; P=0.006)

Greenberg BH, et al. Am Heart J. 2007;154:277.e1-8.

AACE Inpatient Glycemic Control Resource Center

Rehospitalization Rates

Failure to Identify Diabetes Is a Predictor of Rehospitalization

Robbins JM, Webb DA. *Med Care*. 2006;44:292-296. AACE Inpatient Glycemic Control Resource Center

Identify Patients With Undiagnosed Diabetes OPPORTUNITY

Increased Identification/Coding of Patients With Diabetes

Diabetes as a First or Second Diagnosis

Olson L, et al. *Endocr Pract*. 2006;12(suppl 3):35-42. AACE Inpatient Glycemic Control Resource Center

Increased Revenue From Newly Identified Patients

Diabetes as a Secondary Diagnosis

	Revenue - Cost	Newly Identified Patients	Increased Margin
FY 97	\$2640		
FY98	\$4665	-28	-\$130,620
FY99	\$3694	790	\$2,918,260
FY00	\$4221	534	\$2,254,014
FY01	\$4394	325	\$1,428,050
FY02	\$5410	407	\$2,201,870
FY03	\$4785	155	\$741,675
FY04	\$5917	128	\$757,376
FY05	\$6233	667	\$4,157,411

Olson L, et al. *Endocr Pract*. 2006;12(suppl 3):35-42. AACE Inpatient Glycemic Control Resource Center \$14,328,036

Total

Reduce the Average Length of Stay (ALOS) Gap Between Patients With and Without Diabetes Through Effective Diabetes Management

OPPORTUNITY

After implementing a new hyperglycemia protocol, average blood glucose levels dropped from 243 mg/dL to 148 mg/dL

Olson L, et al. *Endocr Pract*. 2006;12 (suppl 3):35-42. AACE Inpatient Glycemic Control Resource Center

Reducing the ALOS Gap Patients With and Without Diabetes as a First Diagnosis

Olson L, et al. *Endocr Pract*. 2006;12(suppl 3):35-42. AACE Inpatient Glycemic Control Resource Center

Readmission Trends: Patients With Diabetes as a Secondary Diagnosis

Olson L, et al. *Endocr Pract*. 2006;12(suppl 3):35-42.

Implementation of Inpatient Diabetes Management Program Improves the Bottom Line

- Accurately identifying and coding patients for diagnosis of diabetes added \$632,797 to the bottom line
- The gap between average length of stay (ALOS) for patients with diabetes vs those without diabetes was reduced from 3 to 1.2 days
- Readmission of patients with diabetes as a second diagnosis decreased from 10.5% to 7.3%

Olson L, et al. *Endocr Pract*. 2006;12(suppl 3):35-42. AACE Inpatient Glycemic Control Resource Center

Glucose Control Lowers Risk of Wound Infection in Patients With Diabetes After Cardiac Surgery

Blood Glucose (mg/dL), First Postoperative Day

Glucose Control Lowers Costs Associated with Hospital-Acquired Infections

Length of Stay (LOS) and Cost Comparison Socioeconomic Costs of DSWI: 16 Days and \$26,000

Furnary AP, et al. *Ann Thorac Surg.* 1999;67:352-362. AACE Inpatient Glycemic Control Resource Center

Use of Intravenous Insulin Therapy Improves the Bottom Line

- In cardiac surgery patients with diabetes, continuous intravenous insulin therapy:
 - Reduced risk of deep sternal wound infection (DSWI)
 - Per patient cost savings from DSWI prevention = \$2613
 - Reduced average glucose level by 135 mg/dL, translating into 2.7-day decrease in LOS
 - Per patient cost savings from glucose reduction = \$3105

Total cost savings = \$5580 per patient treated with continuous intravenous insulin therapy

Furnary AP, et al. *Endocr Pract*. 2004;10(Suppl 2):21-33. AACE Inpatient Glycemic Control Resource Center

Cost Analysis of Glycemic Control in Mixed ICU

- Annualized cost savings = \$1,340,000
- Savings per patient = \$1580
- Reduced LOS (mean = 3.4 days; median = 1.7 days)
- Number of ICU days reduced 17.2%
- Number of ventilator hours reduced 19.0%
- Laboratory costs reduced 24.3%
- Pharmacy costs reduced 16.7%
- Imaging costs reduced 5.0%

Valuable Results in Clinical and Financial Outcomes

- Changes in the initiation of IV insulin therapy have reduced monthly average glucose values in the medical ICU from 169 to 123 mg/dL
- The rate of catheter-related bloodstream infection (CR-BSI) has been reduced 33.5%
- Reducing these infections is estimated to save \$6198 per 1000 event days, more than offsetting the additional cost of the IV insulin

Implementation of Inpatient Diabetes Management Program Improves the Bottom Line

- Implementing an inpatient diabetes management program was associated with a length of stay reduction of 0.26 days, resulting in:
 - Revenue enhancement of \$2,224,029 due to increased throughput
 - Return on investment of 467%

 Rate of catheter-related bloodstream infection was reduced by one-third in cardiac surgery patients, resulting in:

Estimated saving of \$6198 per 1000 event days

The ALOS for Patients With a Diagnosis of Diabetes Decreased From 6.01 to 5.75

• Benefits include:

- Cost aversion
 - Particularly relevant for patients who have a predetermined reimbursement based on DRG
- Throughput
 - Appropriately discharging a patient more quickly makes the bed available to another patient
 - Multiplying an incremental inpatient volume by the revenue margin per patient totaled a throughput value of more than \$2 million/year

Economic Benefits of Intensive Insulin Therapy in the ICU

Targeted Insulin Therapy to Improve Hospital Outcomes

- Multidisciplinary approach to develop new insulin protocols and educate physicians, nurses, pharmacists, dietitians
- IV insulin protocol modified version of Markovitz protocol initiated for BG >140mg/dL
- Subcutaneous insulin incorporating basal, nutritional, and corrective insulin
- Core TRIUMPH team consisting of endocrinologist and diabetes educator would oversee management

Economic Analysis of Intensive Insulin Therapy in Critically III: TRIUMPH Study

- Economic impact of implementation of a clinical glucose management service in the ICUs
- Difference analysis:
 - Change in a given outcome between intervention vs comparison groups over the pre- and postintervention periods
 - Accounted for any confounding secular time trends over the years (eg, price inflation, hospital-wide financial changes, and other new clinical practices)

Types of Hospitalization Costs

Direct	Patient care expensesExamples: nursing, radiology, pharmacy, laboratory
Indirect	 Ancillary care expenses Examples: patient escort, nutrition, administration, financial services
Variable	Costs that change with volume
Fixed	Do not change with volumeExample: cost of building space
Total	All above costs together

Sadhu A, et al. *Diabetes Care.* 2008;31(8):1556-1661. AACE Inpatient Glycemic Control Resource Center

TRIUMPH Study: Cost Analysis After 1 Year

Outcome	Change in Outcome N=6719 2003-2005		
Total costs	-\$4746 (-\$10,509, \$1832)		
Direct variable costs	-\$2210 (-\$5593, \$1584)		
Total ICU costs	-\$5231 (-\$13,775, \$3591)		
Direct variable ICU costs	-\$1143 (-\$4096, \$2068)		
Total hospital LOS	-0.47 (-1.87, 1.02)		
ICU LOS	-1.19 (-1.93, -0.43)*		
Mortality	011 (-0.05, 0.03)		

TRIUMPH Study: Cost Analysis After 3 Years

Outcome	Change in Outcome N=11,129 (2003-2007)**
Total costs	-\$7580 (-\$13,643, -\$1180)*
Direct variable costs	-\$4960 (-\$8998 <i>,</i> -\$850)*
Total ICU costs	-\$9919(-\$17,995, -\$2175)*
Direct variable ICU costs	-\$3216 (-\$6219, -\$371)*
Total days	-0.25 (-1.55, .99)
ICU days	-1.88 (-2.78, -0.89)*
Mortality	026 (06,.00006)
Average glucose per patient day (mg/dL)	-9.18 (-12.49, -5.97)**

* *P*≤.05.

** Glucose readings are from 2004 to 2007.

Costs are CPI adjusted; 95% empirical, bias-corrected bootstrapped confidence intervals shown in parentheses.

Sadhu A, et al. Diabetes. 2010;59(Supp 1):Abstr. 433-PP.

AACE Inpatient Glycemic Control Resource Center

Bottom Line

- 3381 admissions treated under the TRIUMPH program from 2005-2007
- Total cost savings of \$7580/patient

Sadhu A, et al. Diabetes. 2010;59(Supp 1):Abstr. 433-PP.

AACE Inpatient Glycemic Control Resource Center

ECONOMIC AND CLINICAL IMPACT OF HYPOGLYCEMIA

AACE Inpatient Glycemic Control Resource Center

LOS and Hypoglycemia

- 2538 patients treated with IIT after cardiac surgery¹
 - 77 patients with hypoglycemia (≤3.3 mmol/L or 60 mg/dL) had:
 - Increased ICU LOS by 3 days (P<0.001)
 - Increased hospital LOS by 11 days (P<0.001)
- 4368 admissions of patients with diabetes²
 - Increase in LOS of 2.5 days for each additional day with hypoglycemia (≤2.5 mmol/L or 50 mg/dL)
 - Difference between actual LOS and expected LOS was 8.8 days for patients with >2 days with hypoglycemia

Stamou SC, et al. *J Thorac Cardiovasc Surg*. 2011;142:166-173.
 Turchin A, et al. *Diabetes Care*. 2009;32:1153-1157.

AACE Inpatient Glycemic Control Resource Center

Impact of Hypoglycemia During Hospitalization

	Patients with	Patients without	Comparison		
Outcome	hypoglycemia Mean (median)	hypoglycemia Mean (median)	Difference/OR (95% CI)	P value	
Total Charges (2006 \$) BG <70 mg/dL BG <50 mg/dL	85,905 (33,446) 98,304 (25,401)	54,038 (17,609)	39% (36-42) 50% (43-55)	<0.001 <0.001	
Length of stay (days) BG <70 mg/dL BG <50 mg/dL	11.7 (8.0) 13.6 (9.1)	5.1 (3.8)	3.0 (2.8-3.2) 4.2 (3.8-4.6)	<0.001 <0.001	
Hospital mortality (%) BG <70 mg/dL BG <50 mg/dL	4.8% 6.3%	2.3%	1.07 (1.02-1.11) 1.16 (1.09-1.30)	0.007 <0.001	
New discharge to SNF BG <70 mg/dL BG <50 mg/dL	26.5% 22.7%	14.5%	1.58 (1.48-1.69) 1.84 (1.65-2.04)	<0.001 <0.001	
ndall SM. et al. <i>Endocr Pract.</i> 2	009:15:302-312.				

AACE Inpatient Glycemic Control Resource Center

Curke

Key Points

 Diabetes is an increasingly prevalent diagnosis among hospitalized patients

Many patients have unrecognized diabetes

- Diabetes contributes to greater lengths of stay and increased costs among hospitalized patients
- Identifying and treating diabetes:
 - Reduces risk of serious and expensive complications
 - Reduces length of stay
 - Improves the bottom line

Key Points

- Hospitals and physicians who are diabetes experts, with the support of other allied health professionals, can work together to:
 - Enhance the quality of care and improve outcomes
 - Increase revenues with appropriate payment for care provided and resources expended

Proactive implementation of programs to improve diabetes control improves both patient outcome and hospital bottom lines.

Conclusion

- Glycemic control in the hospital should become a priority
 - Enhance quality and patient safety
 - Competitive advantage
 - Cost savings
 - The Joint Commission Certification