DIABETES AND CANCER AN AACE/ACE CONSENSUS STATEMENT

Yehuda Handelsman, MD, FACP, FACE, FNLA; Derek LeRoith, MD, PhD;
Zachary T. Bloomgarden, MD, MACE; Samuel Dagogo-Jack, MD, FRCP, FACE;
Daniel Einhorn, MD, FACP, FACE; Alan J. Garber, MD, PhD, FACE;
George Grunberger, MD, FACP, FACE; R. Mack Harrell, MD, FACP, FACE, ECNU;
Robert F. Gagel, MD; Harold E. Lebovitz, MD, FACE;
Janet B. McGill, MD; Charles H. Hennekens, MD, DrPH

ENDOCRINE PRACTICE Vol 19 No. 4 July/August 2013 675

Preface

- The American Association of Clinical Endocrinologists (AACE) and the American College of Endocrinology (ACE) convened a task force to develop a consensus on the association of obesity, diabetes, and diabetes management with cancer.
- The consensus is based on a conference with 30 global experts in New York City; followed by an exhaustive analysis of the evidence to understand factors associated with cancer development in obesity and diabetes and to evaluate the potential cancer risk of antihyperglycemic medications.
- The purpose of the consensus is to provide practical recommendations and implications for practice to physicians, clinicians, general healthcare, patients and scientists; and to highlight future research needs.

Presentation Outline

- Epidemiology
- Molecular Mechanisms
- Pathophysiology
- Diabetes Management and Cancer Risk
- Regulatory Position
- Implications for Practice
- Future Research and Conclusion

Epidemiology

Obesity Linked to Specific Cancers

- Each year, 100,500 new cases of cancer are caused by obesity:
 - Breast 33,000
 - Endometrial, 20,700
 - Kidney, 13,900
 - Colorectal, 13,200
 - Pancreas, 11,900.
 - Esophagus, 5,800.
 - Gallbladder, 2,000

Cancer Deaths Associated with Obesity

BMI & Cancer Risk (men)

	Cancer site and type	Number of studies		RR (95% CI)	р	 ²	
Cancer site	e and type Nur	nber of studies		RR (95%	CI)	p	 2
Oesophag	geal adenocarcinoma	5	-	1.52 (1.33	3–1·74)	<0.0001	24%
Thyroid		4		1.33 (1.04	4-1.70)	0.02	77%
Colon		22	+	1.24 (1.2	0–1·28)	<0.0001	21%
Renal		11	-	1.24 (1.1	5-1·34)	<0.0001	37%
Liver		4	_	1.24 (0.9	5-1.62)	0.12	83%
Malignan	t melanoma	6	-	1.17 (1.05	5-1-30)	0.004	44%
Multiple i	myeloma	7	•	1.11 (1.05	5-1.18)	<0.0001	7%
Rectum		18	+	1.09 (1.0		<0.0001	3%
	Gastric	8 -		0.97 (0.88–1.06)	0.49	35%	
	Lung	11 -		0.76 (0.70-0.83)	<0.0001	63%	
^^^	Oesophageal squamous	3 —		0.71 (0.60-0.85)	<0.0001	49%	

Copyright © 2013 AACE.

Renehan AG et al. Lancet. 2008;371:569-578

BMI & Cancer Risk (women)

	Cancer site and type	Number of studies		RR (95% CI)	р	l ²	
	Endometrium	19	-	1.59 (1.50-1.68)	<0.0001	77%	
Cancer sit	e and type Nu	mber of studies		RR (95%	CI)	р	l ²
Endomet	trium	19	-	1.59 (1.50)-1.68)	<0.0001	77%
Gallbladd	ler	2		1.59 (1.02	2-2-47)	0.04	67%
Oesopha	geal adenocarcinoma	3	.—	1.51 (1.31	-1.74)	<0.0001	0%
Renal		12	-	1.34 (1.25	5-1-43)	<0.0001	45%
Leukaem	ia	7	-	1.17 (1.04	⊢1 ·32)	0.01	80%
Thyroid		3	•	1.14 (1.06	5–1·23)	0.001	5%
Postmen	opausal breast	31	*	1.12 (1.08	3-1-16)	<0.0001	64%
Pancreas		11	-	1.12 (1.02	2-1-22)	0.01	43%
Multiple	myeloma	6	•	1.11 (1.07	′ -1·1 5)	<0.0001	0%
Colon	ı ınalıgnant melanoma	19	+	1.09 (1.05	5-1.13)	<0.0001	39%
	Premenopausal breast	20	<u> </u>	0.92 (0.88–0.97)	0.001	39%	
	Lung	6		0.80 (0.66-0.97)	0.03	84%	
	Oesophageal squamous	2 —		0.57 (0.47-0.69)	<0.00 01	60%	
		0.5 0.8	1.0 1.5 2.0				
		Risk ratio (pe	r 5 kg/m² increase)				

BMI & risk of second primary cancer

BMI (post-diagnosis) & breast cancer

Breast cancer-specific survival

Fasting Insulin and Breast Cancer Risk

- Case-control design
- 99 premenopausal T1-3, No-1, Mo BC
- 99 age-matched premenopausal controls with non-proliferative breast biopsies

Insulin Quintile	<u>Level</u> (pmol/L)	Odds Ratio (95% CI) for Breast Cancer (age, weight adjusted)
I	≤ 35	1.0
II	>35 - ≤41	1.19 (0.49 – 2.89)
III	>41 - ≤47	1.33 (0.53 – 3.35)
IV	>47 - ≤58	1.19 (0.48 – 2.93)
V	>58 - ≤180	3.72 (1.32 – 10.5)

P (insulin) = 0.02 (2-tail)

Meta-Analyses of RR of Cancer in Different Organs of Patients with Diabetes

Cancer		RR (95% CI)
Liver (El-Serag <i>et al</i> . 2006)	13 case–control studies 7 cohort studies	2.50 (1.8–3.5) 2.51 (1.9–3.2)
Pancreas (Huxley et al. 2005)	17 case–control studies 19 cohort studies	1.94 (1.53–2.46) 1.73 (1.59–1.88)
Kidney ^a (Lindblad <i>et al.</i> 1999, Washio <i>et al.</i> 2007)	1 cohort study 1 cohort study	1.50 (1.30–1.70) 2.22 (1.04–4.70)
Endometrium (Friberg et al. 2007)	13 case–control studies 3 cohort studies	2.22 (1.80–2.74) 1.62 (1.21–2.16)
Colon–rectum (Larsson <i>et al.</i> 2005)	6 case–control studies 9 cohort studies	1.36 (1.23–1.50) 1.29 (1.16–1.43)
Bladder (Larsson <i>et al.</i> 2006)	7 case–control studies 3 cohort studies	1.37 (1.04–1.80) 1.43 (1.18–1.74)
Non-Hodgkin's lymphoma (Mitri <i>et al.</i> 2008)	5 cohort studies 11 case–control studies	1.41 (1.07–1.88) 1.12 (0.95–1.31)
Breast (Larsson et al. 2007)	5 case–control studies 15 cohort studies	1.18 (1.05–1.32) 1.20 (1.11–1.30)
Prostate (Kasper & Giovannucci 2006)	9 case–control studies 10 cohort studies	0.89 (0.72–1.11) 0.81 (0.71–0.92)

^aData on kidney cancer were not obtained from meta-analysis; CI, confidence interval; RR, relative risk.

Diabetes and Cancer Mortality

- Post-operative cancer patients with T2DM have ~85% higher overall mortality compared to patients without T2DM
 - adjusted for confounders the increased mortality is ~50%

Molecular Mechanisms

Cellular Requirements for Tumor Biosynthesis

- Tumor cells depend on multiple energy sources not just glucose
- Genetic mutations and altered metabolism also support tumor growth

Copyright © 2013 AACE.

May not be reprinted in any form without express written permission from AACE.

Adapted from: Hursting SD et al. *JNCI*. 1999;91:215-25 Abel EL et al. *Nat Protoc*. 2009;4:1350-62 Loeb LA et al. *Cancer Res*. 2008;68:6863-72

Pathophysiology

How Can the Metabolic Syndrome, Obesity, and Type 2 Diabetes Affect Cancer Development and Metastases?

Nutrients
IGF-I
Leptin
Adiponectin
Cytokines
Chemokines
Estrogen

Hyperinsulinemia Hyperglycemia Hyperlipidemia

Obesity, Insulin, and IGF-1

• Increased BMI has been directly related to increased insulin and free insulin-like growth factor-1 (IGF-1) levels.

Pathways Linking Obesity with Breast Cancer

Potential Mechanisms Linking Diabetes and Cancer

Hyperinsulinemia and Cancer (Direct Effects)

Insulin, Insulin-like Growth Factors, and Receptors

Hyperinsulinemia and Cancer (Indirect Effects)

Diabetes Management & Cancer Risk

Risk-benefit of diabetes versus therapy

Insulin Therapy and Cancer

Diabetologia (2009) 52:1732–1744 DOI 10.1007/s00125-009-1418-4

ARTICLE

Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study

L. G. Hemkens • U. Grouven • R. Bender • C. Günster • S. Gutschmidt • G. W. Selke • P. T. Sawicki

Diabetologia (2009) 52:1755–1765 DOI 10.1007/s00125-009-1453-1

ARTICLE

Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group

H. M. Colhoun · SDRN Epidemiology Group

Diabetologia (2009) 52:1766-1777 DOI 10.1007/s00125-009-1440-6

ARTICLE

The influence of glucose-lowering therapies on cancer risk in type 2 diabetes

C. J. Currie · C. D. Poole · E. A. M. Gale

Increased Cancer-Related Mortality for Patients With Type 2 Diabetes Who Use Sulfonylureas or Insulin

SAMANTHA L. BOWKER, MSC^{1,2} SUMIT R. MAJUMDAR, MD, MPH^{1,3} PAUL VEUGELERS, PHD²
JEFFREY A. JOHNSON, PHD^{1,2}

Diabetes Care 29:254-258, 2006

Malignant Neoplasm in Diabetic Patients with Different Insulin Doses (Glargine vs. Human Insulin)

• N=127,031 T1 and T2 insulin-treated patients. 95,804 human insulin, 23,855 glargine, followed up to 4.4 years (mean 1.6 years), cancer-free in preceding 3 years.

	Incidence per 1,000 patient-years (95% CI)			
	<20 U/d	20-40 U/d	>40 U/d	
Glargine	18.6 (16.5-20.7)	20.3 (17.9-22.9)	52.6 (42.9-63.8)	
Human Insulin	17.3 (16.1-18.6)	23.6 (22.3-25.0)	31.0 (29.6-32.3)	

Note high rates of new cancer in the study

ORIGIN Trial Results

The ORIGIN Trial: Lack of Association of Insulin Glargine with Malignancy

	Insulin	Control	P-value
Cancer death	3.0%	3.0%	N.S.
Breast cancer	0.4%	0.4%	N.S.
Lung cancer	1.3%	1.1%	N.S.
Colon cancer	1.2%	1.1%	N.S.
Prostate cancer	2.1%	2.2%	N.S.
Melanoma	0.2%	0.3%	N.S.
Other cancer	3.7%	3.9%	N.S.
Total cancers	8.9%	9.0%	N.S.

N.S., not significant

Meta-analysis: Insulin Glargine and Cancer Risk

• Findings from an European Medicines Agency (EMA)-commissioned database study indicate significantly decreased risk of all cancer and prostate cancer (glargine vs. non-glargine use).

Cancer Type	Cancer Incidence Summary Relative Risk (95% CI)
All cancer	0.90 (0.82 - 0.99)
Colorectal	0.84 (0.74 - 0.95)
Breast	1.11 (1.00 – 1.22)
Prostate	1.30 (1.00 – 1.28)

Meta-analysis: Insulin Glargine and Cancer Risk

 Data from the Inovalon MORE 2 registry and the Kaiser Permanente Northern California (KPNC) database showed no significant increased risk of all cancer incidence (glargine vs. NPH use)

Database	All Cancer Incidence Hazard Ratio (95% CI)
Inovalon MORE 2 Registry	1.12 (0.95 – 1.32)
KPNC	0.90 (0.90 - 1.00)

Incretin-based Therapies and Cancer

- Studies Demonstrating Effects of GLP-1 agonists on Rodent C Cells:
 - Treatment with GLP-1 agonists caused an increase in number of C cells; prolonged treatment was associated with development of medullary thyroid cancer (MTC)
 - Treatment with liraglutide stimulated increases in serum calcitonin in rodents
 - Rats treated with weekly exenatide for 2 years had increased incidence of thyroid C-cell neoplasms (adenomas and carcinomas) in males and females at all doses tested.
 - Human relevance of findings are unknown

Percentage of Male Mice or Rats Who Developed C cell Adenomas or Carcinomas with Liraglutide Treatment

GLP-1 Agonists and Thyroid Carcinoma

- Thyroid C-cell carcinomas in rats with glucagon like peptide-1 (GLP-1) receptor agonist exposure are not believed to be a cause of concern in humans:
 - Rodents have ~45x more C-cells than humans
 - Only rodent C-cell lines express functional GLP-1 receptors

GLP-1 Agonists and Calcitonin

- Plasma calcitonin levels did not increase in patients with T2DM treated with liraglutide or comparator for two years in the Phase III LEAD-2 & -3 trials (Figures A, B, and C)
- Plasma calcitonin also did not increase in LEAD-6 (liraglutide vs. exenatide BID)

Bjerre Knudsen L et al. *Endocrinology*. 2010;151:1473-86 Hegedüs L et al. *J Clin Endocrinol Metab*. 2011;96:853-60

Thyroid Neoplasms in RCTs

 No great disparity in the incidence of thyroid neoplasms has been observed between GLP-1 receptor agonists and placebo or active comparator.

GLP-1 Agonist	Treatment Group	Incidence Rate
Liraglutide	Liraglutide	1.3 cases per 1000 patient-years
	Placebo	1.0 cases per 1000 patient-years
Exenatide BID	Exenatide BID	0.3 cases per 100 patient-years
	Comparator	0 cases per 100 patient-years

BID, twice daily; GLP, glucagon-like peptide; RCT, randomized controlled trial

GLP-1 agonists increase β-cell mass in rodents

Sitagliptin & Pancreatic Cancer

- Animal studies are conflicting:
 - Sitagliptin was associated with increased pancreatic ductal proliferation (8/8 rats), ductal metaplasia (3/8) and pancreatitis (1/8)
 - In <u>human islet amyloid polypeptide transgenic rat model</u> of type 2 diabetes
 - Potential risk factors for pancreatic cancer
 - Sitagliptin exposure (± metformin) for one year in mice was associated with no increase in pancreatitis, ductal metaplasia, or neoplasia compared to the no treatment group.

GLP-1 Receptor Agonists Pancreatic ductal metaplasia and tumors?

- Butler Nauck debate at EASD 2011:
 - "For now, this analysis of the FDA database does not establish that pancreatitis, pancreatic and thyroid cancer are caused by GLP-1 based therapy. It simply raises the level of concern that they may be and that the appropriate prospective studies are required to rule them out."
 - "...at least a decade between the occurrence of the initiating mutation..."
 - "At least five more years are required for the acquisition of metastatic ability..."

Incretin-Based Therapies and Cancer - Pancreas

Exenatide Clinical Studies:

- Pancreatic Cancer
 - Exenatide Incidence: 0.5/1,000 pt-yrs
 - Insulin incidence: 1.6/1,000 pt-yrs
 - Placebo incidence: o/1,000 pt-yrs.
- Adverse Events Reported:
 - Pancreatic cancer: 6.7/100,000 pt-yrs
- German Adverse Events Database 2011
 - Pancreatic cancer 11 cases in 4 years
 - 15,000 to 25,000 patients treated yearly
 - Average duration of treatment 12 months

Could GLP-1 Be a "Good Guy"?

- GLP-1 is a potent inducer of cAMP and inhibitor of breast cancer cell proliferation
- Treatment of CT26 colon cancer cells and of CT26 tumor-bearing mice with <u>exenatide</u> → increased tumor apoptosis, reduced growth and survival in CT26 colon cancer
- Human neuroblastoma SH-SY5Y: <u>GLP-1 and</u> <u>exenatide</u> stimulate cell proliferation and increase cell viability, enhance neuroprotection

Regulatory Communications (Incretin Mimetics)

- European Medicines Agency (EMA):
 - "Presently available data do not confirm recent concerns over an increased risk of pancreatic adverse events with these medicines."
 - "With regard to pancreatic cancer, data from clinical trials do not indicate an increased risk..."

• FDA:

- "Patients should continue to take their medicine as directed until they talk to their health care professional..."
- "...health care professionals should continue to follow the prescribing recommendations in the drug labels."

Meta-Analysis of Metformin and Cancer

All Cancer

- 5 observational studies
 - 4 cohort, 1 case control
- N=29,792, average follow-up ~6 years

Colorectal and breast cancer

- 4 observational studies
 - 2 cohort, 2 case control
- N=18,668, average follow-up ~4 years

Metformin and Cancer

Breast Cancer Incidence

Cancer Mortality

Chlebowski RT et al. *J Clin Oncol*. 2012;30:2844-52 Landman GW et al. *Diabetes Care*. 2010;33:322-6

CT.gov "Metformin and Cancer" Search (September 18, 2013)

- 81 open studies returned
- 53 relevant to cancer
 - Breast: 16
 - Colorectal: 8
 - Prostate: 6
 - Gynecologic: 5
 - Pancreatic: 4
 - Leukemia: 4
 - Other Cancers: 10 (lung, skin, head/neck, heme, etc.)
- Most studies investigating improved patient response to chemotherapy, improved survival, or chemoprevention.

Do Thiazolidinediones (TZDs) Cause Cancer?

Pioglitazone:

Study	Exposed n/N	Comparison <i>n/N</i>	Risk ratio (95% CI)		Reduced risk — of cancer		
Lewis et al. ¹⁰	90/30 173	791/162 926	1.2 (0.9–1.5)				
Neumann et al. ¹⁹	175/155 535	1 841/1 335 525	1.22 (1.05-1.43)			!	
Tseng ²⁰	10/2 545	155/52 383	1.30 (0.66–2.58)		ā.	1	-
Overall	00/		1.22 (1.07–1.39)			•	
Heterogeneity: I ² =	= 0%			0.2	0.5 Risk ratio	1 2 o (95% CI)	5

Rosiglitazone:

Study	Intervention n/N	Control n/N	Risk ratio (95% CI)	Reduced risk Increased risk ← of cancer of cancer →
Kahn et al. ¹⁶ Home et al. ¹⁷	2/1456 6/2220	8/2895 5/2227	0.50 (0.11–2.34) 1.20 (0.37–3.94)	
Overall Heterogeneity: <i>l</i> ²	8/3676 ² = 0%	13/5122	0.87 (0.34–2.23)	
,				0.1 0.2 0.5 1 2 5 10 Risk ratio (95% CI)

Thiazolidinediones and Cancer

- PROactive: A prospective randomized, controlled multicenter study of the effect of pioglitazone on CV events in patients with T2DM
- Pioglitazone (n=2605); Placebo (n=2633)
- Incidence of malignancy was similar in both groups
 - 97 (3.7%) pioglitazone, 99 (3.8%) placebo
- However:
 - Fewer breast cancer cases with pioglitazone
 - 3 (0.1%) pioglitazone, 11 (0.4%) placebo
 - More bladder cancer cases with pioglitazone
 - 14 (0.5%) pioglitazone, 5 (0.2%) placebo

FDA Safety Communication (Pioglitazone and Bladder Cancer)

- Five-year interim data from the Kaiser Permanente Northern California health plan indicated no significant increase in the risk of bladder cancer with pioglitazone (HR 1.2, 95% CI 0.9 to 1.5)
 - Nominally significant increased risk for use >2 years (HR 1.4, 95% CI 1.03 to 2.0)
- Practitioners should "not use pioglitazone in patients with active bladder cancer," and should use "with caution in patients with a prior history of bladder cancer."

Rosiglitazone Meta-analysis

- Included 80 clinical trials
- Rosiglitazone (N=16,332) vs.
 Comparator (N=12,522)
- Rosiglitazone combined with placebo or other treatments did not significantly modify cancer risk (OR 0.91, 95% CI 0.71-1.16)
- The incidence of malignancies was significantly lower in rosiglitazone-treated patients than in control groups at **0.23** vs. **0.44** cases/100 patient-years (*P*<**0.05**)

Copyright © 2013 AACE.

RECORD Study

Variable	Background Sulfonylurea		Background Metformin		
	Metformin	Rosiglitazone	Sulfonylurea	Rosiglitazone	
n	1,122	1,103	1,105	1,117	
Study exposure, (person-years)	6,126	6,110	6,146	6,228	
Malignancies, n (%)	69 (6.1)	56 (5.1)	74 (6.7)	57 (5.1)	
Rate (per 100 person-years)*	1.15	0.94	1.23	0.93	
Hazard ratio (95% CI)	1.22 (0.86-1.74)		1.33 (0.94-1.88)		

^{*}Adjusted for study exposure; CI, confidence interval; RECORD, Rosiglitazone Evaluated for Cardiovascular Outcomes and Regulation of Glycaemia in Diabetes

TZDs and Prostate Cancer

Copyright $\ \ \,$ 2013 AACE. May not be reprinted in any form without express written permission from AACE.

TZDs and HER2+ Breast Cancer

Association of TZDs with Decreased Cancer Incidence

- Lung:
 - Govindarajan, et al. (2007). *J Clin Oncol* 25(12): 1476-1481.
 - Lai, et al. (2012). *Clin Lung Cancer* 13(2): 143-148.
- Liver:
 - Chang, et al. (2012). *Hepatology* 55(5): 1462-1472.
- Colon/rectum:
 - Chang, et al. (2012). *Hepatology* 55(5): 1462-1472.
- Cancers in general:
 - van Staa, et al. (2012). *Diabetologia* 55(3): 654-665.
 - Yang, et al. (2012). *Diabetes Res Clin Pract* 97(1): e11-15.
- No clear evidence of an association between use of pioglitazone and risk of the incident cancers examined.
 - Koro, et al. (2007). Pharmacoepidemiol Drug Saf 16(5): 485-492.
 - Ferrara, et al. (2011). *Diabetes Care* 34(4): 923-929.

Sodium-Glucose Cotransporter 2 Inhibitors

- Dapagliflozin, which is currently approved in Europe only, was implicated with an increased incidence of breast and bladder cancer.
 - The increased incidence was *not statistically significant*
- Canagliflozin which was recently approved in the United States has not been associated with a cancerrelated safety signal of concern.

SGLT2 Inhibitors - Potential Signal Identified from Dapagliflozin Clinical Data

- Interim clinical data May 2011 cutoff
 - Overall incidence of malignancies or unspecific tumors was balanced
 - However, imbalance in some tumor types was noted

Adverse Events	Dapagliflozin (N=4559)	All Control (N=2239)
Any Malignant or Unspecified Tumor	65 (1.4%)	29 (1.3%)
Bladder	7 (0.15%)	0 (0%)

Bladder Cancers in Dapagliflozin Studies Were

Likely Pre-existent

	Dapagliflozin	Control
Subjects	5501	3184
Exposure	5874 pt-y	3216 pt-y
Subjects with Events	9 of 5501 (0.16%)	1 of 3184 (0.03%)
Incidence rate (95% CI)	0.15 (0.07, 0.29)	0.03 (0.00, 0.17)

Incidence Rate Ratio: 5.176 (95% CI: 0.678, 233.92)

*Database Cut of 15 July 2011

Dapagliflozin: control exposure ratio ~ 1.8

Diabetes Medications and Cancer Risk

Medication Class	Cancer Risk Summary
Insulin	No evidence of cancer risk from RCTs
Incretins	
GLP-1 agonists	No evidence of MTC or pancreatic cancer in humans
DPP-4 Inhibitors	No evidence of MTC or pancreatic cancer in humans
Metformin	No discernible cancer risk Possible protective benefits on cancer outcomes
Thiazolidinediones	
Rosiglitazone	No evidence of cancer risk
Pioglitazone	Possible risk of bladder cancer at chronic high doses (>24 months and >28,000-mg cumulative dose)
SGLT2 Inhibitors	No evidence of cancer risk

DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon like peptide-1; MTC, medullary thyroid carcinoma; SGLT2, sodium-glucose cotransporter 2

Does Bariatric Surgery Affect Mortality? (Utah Obesity Surgery Study)

- Retrospective cohort design:
 - 9949 gastric bypass patients
 - 9628 severely obese (BMI ≥35 kg/m²) driver's license applicants (control)

	Surgery Group (n/ 10,000 person-yrs)	Control Group (n/ 10,000 person-yrs)
All causes of death	37.2	61.1
CV disease	8.5	19.3
Diabetes	0.3	3.5
Cancer	5.4	15
Other disease	11.4	17

SOS Study: Obesity-related Cancers Decrease with Surgically-induced Weight Loss

Figure 3: The unadjusted cumulative fatal plus non-fatal cancer incidence from the start of the intervention by sex in surgically treated obese individuals and in obese control individuals

Implications for Practice

Implications for Practice (Cancer Screening)

- Cancer screening and counseling on lifestyle changes, should be a part of regular preventive care in people with obesity and/or diabetes.
- Conversely, people who develop cancer at an early age should be screened for metabolic abnormalities.
- Cancer screening tests of proven benefit for malignancies (breast cancer, colon cancer, skin cancer, etc.) in at-risk individuals should begin relatively early.

Implications for Practice (Diabetes Treatments)

- The current totality of evidence on diabetes treatments and cancer risk should not change clinical practice.
- The practitioner must decide if remote yet plausible cancer risks weight more heavily than suboptimal glycemic control and a higher likelihood of diabetes complications in patients.
- Healthcare professionals should have greater confidence in prescribing all FDA-approved antihyperglycemic medications according to current clinical practice recommendations.

Future Research and Conclusion

Future Research Needs

- Questions about the relative contributions of obesity and diabetes to cancer development remain.
 - What role, if any, does various levels of hyperglycemia play?
 - Do patients with diabetes and controlled glucose have a decreased risk of cancer compared to those with uncontrolled glucose?
- Future studies of medications should be designed to detect cancer-related outcomes in addition to efficacy and safety outcomes.
- Randomized controlled trials of sufficient size and duration are needed to minimize bias, confounding, and chance.

Conclusion

- Epidemiology demonstrates a significant increase of cancer in obesity, insulin-resistant states, and ultimately diabetes; <u>early cancer screening is critical</u> in patients with these conditions.
- There is currently insufficient evidence to warrant withholding of the use of certain glucose-lowering medications on the basis of cancer concerns.
- Further collaborative research between clinicians, as well as basic, clinical, and epidemiologic researchers, is necessary to complete the evidence on these complex issues.